Potential for U.S. Agriculture to Be Greenhouse Gas Negative

Authors

DOI:

https://doi.org/10.62300/tfraya48

Keywords:

Greenhouse gas mitigation, Carbon sequestration, Regenerative agriculture, Nitrogen management, Soil health, Animal production systems, Renewable energy in agriculture, Climate-smart farming, Yield gap reduction, Sustainable food systems

Abstract

This report explores the potential for U.S. agriculture to achieve greenhouse gas (GHG) neutrality or become GHG-negative by integrating current and emerging practices across crop and livestock systems. Agriculture contributes approximately 10% of total U.S. GHG emissions, primarily through carbon dioxide, methane, and nitrous oxide. The analysis identifies five major opportunity areas: soil carbon management, nitrogen fertilizer management, animal production and manure handling, crop production efficiency, and on-farm energy use. Adoption of regenerative practices—such as reduced tillage, cover cropping, precision nutrient management, and improved feed systems—combined with renewable energy technologies could reduce emissions by 80–90% under medium adoption scenarios and achieve net-negative emissions with aggressive implementation. The report emphasizes the need for on-farm demonstrations, technical support, and policy incentives to overcome economic and technological barriers. Achieving GHG-negative agriculture would not only mitigate climate impacts but also enhance soil health, water retention, and production resilience, positioning U.S. agriculture as a global model for sustainable food systems.

Downloads

Download data is not yet available.

References

Adom, F., Maes, A., Workman, C., Clayton-Nierderman, Z., Thoma, G., & Shonnard, D. (2012). Regional carbon footprint analysis of dairy feeds for milk production in the USA. The International Journal of Life Cycle Assessment, 17(5), 520-534.

Al-Kaisi, M.M., Archontoulis, S.V., Kwaw-Mensah, D., & Miguez, F. (2015). Tillage and crop rotation effects on corn agronomic response and economic return at seven Iowa locations. Agronomy Journal, 107(4):1411-1424. https://doi.org/10.2134/ agronj14.0470 Alley, M.M., and J.F.K. Roygard. 2001. Intensifying agronomic crop production systems. In: Proceedings of the Information Agriculture Conference, August 13-15, 2001, Sacramento, CA. pp. 169-179.

Alami, A. H., Alasad, S., Ali, M., & Alshamsi, M. (2021). Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Science of The Total Environment, 759, 143529.

Alluvione, F., Moretti, B., Sacco, D., & Grignani, C. (2011). EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy, 36(7), 4468-4481.

Amundson, R. (2021). Kiss the ground (and make a wish): Soil science and hollywood. Biogeochemistry. https://doi.org/10.1007/s10533-021-00857-w

Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., Hui, D., Yang, J., & Mato - cha, C. (2019). Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis. Global Change Biology, 25(8), 2591–2606. https://doi. org/10.1111/gcb.14658

Bai, Y., Alemu, R., Block, S. A., Headey, D., & Masters, W. A. (2021). Cost and afford - ability of nutritious diets at retail prices: evidence from 177 countries. Food policy, 99, 101983. Bodirsky BL, Rolinski S, Biewald A, Weindl I, Popp A, Lotze-Campen H (2015) Global Food Demand Scenarios for the 21st Century. PLoS ONE 10(11): e0139201. https:// doi.org/10.1371/journal.pone.0139201

Barham, J. (2010, December 14). Getting to Scale with Regional Food Hubs. [Blog post]. USDA. Retrieved from https://www.usda.gov/media/blog/2010/12/14/get - ting-scale-regional-food-hubs Broad Leib, E., Wing, S., Rimmington, G. et al. (2016). Leftovers for Livestock: A Legal Guide for Using Food Scraps as Animal Feed. Harvard Law School Food Law and Policy Clinic. https://www.chlpi.org/wp-content/uploads/2013/12/ Leftovers-for-Livestock_A-Legal-Guide-for-Using-Food-Scraps-as-Animal-Feed_ Harvard-Law-School_Food-Law-and-Policy-Clinic.pdf

Barnwell, T. O., Jackson, B., Elliott, E. T., Paustian, K., Donigian, A. S., Patwardhan, A. S., Rowell, A., & Weinrich, K. (1992). An approach to assessment of management impacts on agricultural soil carbon. 13.

Basso, B., & Antle, J. (2020). Digital agriculture to design sustainable agricultural systems. Nature Sustainability, 3(4), 254-256.

Basso, B., Shuai, G., Zhang, J., & Robertson, G. P. (2019). Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Scientific Reports, 9(1), 5774. https://doi.org/10.1038/s41598-019-42271-1

Batjes, N. H. (2014). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1), 10–21. https://doi.org/10.1111/ejss.12114_2

Beauchemin, K.A., Kreuzer, M., O’Mara, F., & McAllister, T.A. (2008). Nutritional management for enteric methane abatement: a review. Austalian Journal of Experi - mental Agriculture, 48, 21-27.

Benavides, P. T., Cai, H., Wang, M., & Bajjalieh, N. (2020). Life-cycle analysis of soybean meal, distiller-dried grains with solubles, and synthetic amino acid-based animal feeds for swine and poultry production. Animal feed science and technology, 268, 114607.

Bhan, M., Gingrich, S., Roux, N., Le Noë, J., Kastner, T., Matej, S., ... & Erb, K. H. (2021). Quantifying and attributing land use-induced carbon emissions to biomass con - sumption: A critical assessment of existing approaches. Journal of Environmental Management, 286, 112228.

Brummer, E.C., Bouton, J.H., Casler, M.D., McCaslin, M.H., & Waldron, B.L. (2009). Grasses and legumes: genetics and plant breeding. In W.F. Wedin, & S.L. Fales (Eds.) Grassland: quietness and strength for a new American agriculture (pp. 157-171).

Camargo, G. G., Ryan, M. R., & Richard, T. L. (2013). Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. Bioscience, 63(4), 263-273.

Cannas, A., Tedeschi, L.O., Atzori, A.S., & Lunesu, M.F. (2019). How can nutrition models increase the production efficiency of sheep and goat operations? Animal Frontiers, 9, 33-44. Capper, J.L. (2007). The environmental impact of beef production in the United States: 1977 compared with 2007. Journal of Animal Science, 89, 4249-4261.

Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), Article 8. https://doi.org/10.1038/ncli - mate2292

Casteel, S. N., Lee, C. D., Naeve, S. L., Nafziger, E. D., Roozeboom, K. L., & Ross, W. J. (2016). Characterizing genotype × management interactions on soybean seed yield. Crop Science, 56(2), 786–796. https://doi.org/10.2135/cropsci2015.06.0368 39

Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation con - cept. Global Change Biology, 21(9), 3200–3209. https://doi.org/10.1111/gcb.12982

Chambers, A., Lal, R., & Paustian, K. (2016). Soil carbon sequestration potential of US croplands and grasslands: Implementing the 4 per Thousand Initiative. Journal of Soil and Water Conservation, 71(3), 68A-74A. https://doi.org/10.2489/jswc.71.3.68A Committee on Developing a Research Agenda for Carbon Dioxide Removal and Re - liable Sequestration, Board on Atmospheric Sciences and Climate, Board on Energy and Environmental Systems, Board on Agriculture and Natural Resources, Board on Earth Sciences and Resources, Board on Chemical Sciences and Technology, Ocean Studies Board, Division on Earth and Life Studies, & National Academies of Sciences, Engineering, and Medicine. (2019). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (p. 25259). National Academies Press. https:// doi.org/10.17226/25259

Clay, J. (2018). How Long-Term Contracts Can Help Drive More Sustainable Agriculture. The Markets Institute at WWF. Available at: https://medium.com/ the-markets-institute/long-term-contracts-c0ccc09dbbc9 (Accessed on July 21, 2021).

Conant, R. (2012). Grassland soil organic carbon stocks: Status, opportunities, vulnerability. In R. Lal, K. Lorenz, R.F. Hüttl, B.U. Schneider, & J. von Braun (Eds.), Recarbonization of the biosphere (pp. 275-302). Dordrecht: Springer.

Conant, R. T., Cerri, C. E. P., Osborne, B. B., & Paustian, K. (2017). Grassland manage - ment impacts on soil carbon stocks: A new synthesis. Ecological Applications, 27(2), 662–668. https://doi.org/10.1002/eap.1473

Conant, R. T., Easter, M., Paustian, K., Swan, A., & Williams, S. (2007). Impacts of periodic tillage on soil C stocks: A synthesis. Soil and Tillage Research, 95(1), 1–10. https://doi.org/10.1016/j.still.2006.12.006 Correction for Schulte et al., Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. (2017). Proceed - ings of the National Academy of Sciences, 114(50), E10851–E10851. https://doi. org/10.1073/pnas.1719680114

Conant, R.T., Cerri, C.E.P., Osborne B.B., & Paustian K. (2017). Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications, 27, 662-668.

Conforti, P., & Giampietro, M. (1997). Fossil energy use in agriculture: an international comparison. Agriculture, ecosystems & environment, 65(3), 231-243. CRS (Congressional Research Service), 2004. Energy Use in Agriculture: Back - ground and Issues. Randy Schnepf, RSID, Congressional Research Service

Cotrufo, M. (2020). Climate, carbon content, and soil texture control the indepen - dent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma, 363, 114160. https://doi.org/10.1016/j.geoderma.2019.114160Jian, J., Du, X., Reiter, M. S., & Stewart, R. D. (2020). A meta-analysis of global crop - land soil carbon changes due to cover cropping. Soil Biology & Biochemistry, 143, 107735. https://doi.org/10.1016/j.soilbio.2020.107735

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988–995. https://doi. org/10.1111/gcb.12113

Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., & Lugato, E. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Natural Geosciences, 12, 989-994.

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emis - sions. Nature Food, 2(3), 198-209.

Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., ... & Jans - sens-Maenhout, G. (2020). High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific data, 7(1), 1-17.

Davidson, E. A., & Ackerman, I. L. (1993). Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 20(3), 161–193. https://doi. org/10.1007/BF00000786 de Oliveira, G., Brunsell, N. A., Crews, T. E., DeHaan, L. R., & Vico, G. (2020). Carbon and water relations in perennial Kernza (Thinopyrum intermedium): An overview. Plant Science, 295, 110279. https://doi.org/10.1016/j.plantsci.2019.110279 De Stefano, A., & Jacobson, M. G. (2018). Soil carbon sequestration in agroforest - ry systems: A meta-analysis. Agroforestry Systems, 92(2), 285–299. https://doi. org/10.1007/s10457-017-0147-9

DeLonge, M. (2016). Greenhouse gas costs and benefits from land-based textile production. San Geronimo, CA: The Fibershed Project. http://www.fibershed.com/ wp-content/uploads/2016/10/Appendix-H.pdf

Derner, J.D., Boutton, T.W., & Briske, D.D. (2006). Grazing and ecosystem carbon storage in the North American Great Plains. Plant and Soil, 280, 77–90.

Derpsch, R., Friedrich, T., Kassam, A., & Li, H. (2010). Current Status of Adoption of No-till Farming in the World and Some of its Main Benefits. International Journal of Agricultural and Biological Engineering, 3(1), Article 1. https://doi.org/10.25165/ijabe. v3i1.223

Derwent, R. G. (2020). Global Warming Potential (GWP) for Methane: Monte Carlo Analysis of the Uncertainties in Global Tropospheric Model Predictions. Atmosphere, 11(5), 486.

Dijkstra, J. (2023). A meta-analysis of effects of 3-nitrooxypropanol on methane pro - duction, yield, and intensity in dairy cattle. Journal of Animal Science, 106, 927 – 936.

Dixon, L.M. (2020). Slow and steady wins the race: The behaviour and welfare of commercial faster growing broiler breeds compared to a commercial slower growing breed. PLoS One, 15, e00231006.

Du, Z., Zhao, J.-K., Wang, Y.-D., & Zhang, Q. (2017). Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. Journal of Soils and Sediments, 17. https://doi.org/10.1007/ s11368-015-1349-2 Food and Agriculture Organization of the United Nations (FAO). (2019). RECSOIL: Recarbonization of Global Soils. Global Soil Partnership. Available at: https://www. fao.org/global-soil-partnership/programme-projects/programmes/recsoil/en/

Ellis, E. C., Fuller, D. Q., Kaplan, J. O., & Lutters, W. G. (2013). Dating the Anthropo - cene: Towards an empirical global history of human transformation of the terrestrial biosphere. Elementa, 1, 000018.

EPA (2016). Available at: https://www.epa.gov/sites/production/files/2016-12/docu - ments/wasted_food_report_12_8_16_v2.pdf (Accessed on January 10, 2021). US EPA (2019). Overview of Greenhouse Gases. Available at: https://www.epa.gov/ ghgemissions/overview-greenhouse-gases (Accessed: May 13, 2021). US EPA. (2020). Greenhouse Gas Equivalencies Calculator. Retrieved from https:// www.epa.gov/energy/greenhouse-gas-equivalencies-calculator (Accessed on January 10, 2021). World Wildlife Fund. (2021). 5 Holistic Approaches to Tackling On-Farm Food Loss: 2020 No Food Left Behind Virtual Convening Summary. Retrieved from https:// www.worldwildlife.org/publications/5-holistic-approaches-to-tackling-on-farm- food-loss-2020-no-food-left-behind-virtual-convening-summary World Wildlife Fund - UK. (2021). Driven to waste: The Glob - al Impact of Food Loss and Waste on Farms. Available at: https://files. worldwildlife.org/wwfcmsprod/files/Publication/file/6yoepbekgh_wwf_uk__ driven_to_waste___the_global_impact_of_food_loss_and_waste_on_farms. pdf?_ga=2.119625867.2019834886.1682577925-1544819701.1681161472 (accessed July 19, 2021).

EPA 4-30-R-2-002. Environmental Protection Agency, Washington, D.C. Eugène, M., Massé, D., Chiquette, J., & Benchaar, C. (2008). Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Canadian Journal of Animal Science, 88, 331-337.

EPA. (2020). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2018.

Ertl, P., Knaus, W., & Zollitsch, W. (2016). An approach to including protein quality when assessing the net contribution of livestock to human food supply. Animal, 1, 1883-1889.

Fadel, J., Chiodini, M.E., Poggianella, L., & Mitloehner, F.M. (2020). Effect of SOP “STAR COW” on enteric gaseous emissions and dairy cattle performance. Sustain - ability 12(24), 10250.Rotz, C.A., Asem-Hiablie, S., Place, S.E., & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. Agricultural Systems, 169, 1–13.

FAO. (2021). The State of Food Security and Nutrition in the World 2021. Available at: https://docs.wfp.org/api/documents/WFP-0000130141/download/?_ ga=2.227553818.667262492.1682577653-2112413383.1680499343. Food Waste Policy Action Plan (2021). Available at: https://foodwasteactionplan. org/ (accessed April 27, 2023).

FAOSTAT. (2020). FAO online statistical database. https://faostat.fao.org

Feller, C., Compagnone, C., Goulet, F., & Sigwalt, A. (2014). Historical and Socio - cultural Aspects of Soil Organic Matter and Soil Organic Carbon Benefits. (pp. 169–178). https://doi.org/10.1079/9781780645322.0169

Fertahi, S., Bertrand, I., Ilsouk, M., Oukarroum, A., Amjoud, M. B., Zeroual, Y., & Barakat, A. (2020). New generation of controlled release phosphorus fertilizers based on biological macromolecules; Effect of formulation properties on phosphorus release. Biomacromolecules, 21(2):603-615. doi: 10.1021/acs.biomac.9b01648

Fischer, R.A. 1985. Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science 105(2):447-461.Fischer, T., Byerlee, D., & Edmeades, G. (2014). Crop yields and global food security: Will yield increase continue to feed the world? Australian Centre for International Agricultural Research. (ACIAR Monograph No. 158). Canberra: xxii + 634 pp. ISBN 978-1- 9251330-05-9 38

Franzluebbers, A., Fry, R., Paustian, K., & Schoeneberger, M. M. (2010). Carbon sequestration in agricultural lands of the United States. Journal of Soil and Water Conservation, 65(1), 6A-13A. https://doi.org/10.2489/jswc.65.1.6A

Fuhlendorf, S.D., Zhang, H., Tunnell, T.R., Engle, D.M., & Cross, A.F. (2002). Effects of grazing on restoration of southern mixed prairie soils. Restoration Ecology, 10, 401–407.

Fujimori, S.; Hasegawa, T.; Heyhoe, E.; Kyle, P.; Lampe, M. V.; Lotze-Campen, H.; d’Cros, D. M.; van Meijl, H.; van der Mensbrugghe, D.; Muller, C.; Popp, A.; Robert - son, R.; Robinson, S.; Schmid, E.; Schmitz, C.; Tabeau, A. & Willenbockel, D. (2013), ‘Climate change effects on agriculture: Economic responses to biophysical shocks’, Proceedings of the National Academy of Sciences of the United States of America doi:10.1073/pnas.1222465110, 1-6.

Gadde, U., Kim, W., Oh, S., & Lillehoj, H. (2017). Alternatives to antibiotics for maxi - mizing growth performance and feed efficiency in poultry: A review. Animal Health Research Reviews, 18, 26-45.

Galmes, J., Kapralov, M.V., Andralojc, P.J., Conesa, M.A., Keys, A.J., Parry, M.A.J., & Flexas, J. (2014). Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant, Cell & Environment, 37(9):1989-2001. doi: 10.1111/pce.12310

Goidts, E., Grace, P., Kätterer, T., McConkey, B. G., Ogle, S., Pan, G., & Siebner, C. (2011). How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO2 fluxes in agricultural soils? Plant and Soil, 338(1–2), 247–259. https://doi.org/10.1007/s11104-010-0567-z

Grant, R.J. (2017). Invited review: Sustainable forage and grain crop production for the US dairy industry. Journal of Dairy Science, 100, 9479-9494.

Grebey, T.C., Ali, A.B.A., Swanson, J.C., Widowski, T.M., & Siegford, J.M. (2020). Dust bathing in laying hens: strain, proximity to, and number of conspecifics matter. Poultry Science, 99, 4103-4112.

Green, S., ... & McCord, S. E. (2024). Insights from the USDA Grazing Land National Resources Inventory and field studies. Journal of Soil and Water Conservation, 79(3), 37A-42A.

Grooten, M. and Almond, R.E.A. (Eds). (2018). Living Planet Report 2018: Aiming Higher. Gland, Switzerland: WWF. Retrieved from https://www.worldwildlife.org/ pages/living-planet-report-2018

Gross, A., Bromm, T., & Glaser, B. (2021). Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy, 11(12), Article 12. https:// doi.org/10.3390/agronomy11122474

Gunders, D., & Bloom, J. (2017). Wasted: How America is Losing Up to 40 Percent of Its Food from Farm to Fork to Landfill. Natural Resources Defense Council. https:// www.nrdc.org/sites/default/files/wasted-food-IP.pdf

Gyamfi, B. A., Ozturk, I., Bein, M. A., & Bekun, F. V. (2021). An investigation into the anthropogenic effect of biomass energy utilization and economic sustainability on environmental degradation in E7 economies. Biofuels, Bioproducts and Biorefining, 15(3), 840-851.Haroon, M., Idrees, F., Naushahi, H. A., Afzal, R., Usman, M., Qadir, T., & Rauf, H. (2019). Nitrogen use efficiency: farming practices and sustainability. Journal of Experimental Agriculture International, 1-11.

Heidari, M.D., Gandaasasmita, S., Li, E., & Pelletier, S. (2021). Review: Proposing a framework for sustainable feed formulation for laying hens: A systematic review of re - cent developments and future directions. Journal of Cleaner Production, 288, 125585.

Henderson, B., & Steinfeld, H. (2013). Greenhouse gas emissions from pig and chick - en supply chains- a global life cycle assessment. FAO, Rome.

Henderson, B.B., Gerber, P.J., Hilinski, T.E., Falcucci, A, Ojima, D.S., Salvatore, M., & Conant, R.T. (2015). Greenhouse gas mitigation potential of the worlds grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices. Agriculture, Ecosystem and Environment, 207, 91-100.

Hergert, G., Pan, W., Huggins, D., Grove, J., & Peck, T. (2015). Adequacy of current fertilizer recommendations for site‐specific management. In F. Pierce and E. Sadler (Eds.), The State of Site Specific Management for Agriculture (pp.283-300). SSSA Special Publications. doi:10.2134/1997.stateofsitespecific.c13

Herrero, M. (2014). ‘Farm household models to analyse food security in a changing climate: A review’, Global Food Security, 3/2. DOI: 10.1016/j.gfs.2014.05.001

Hitaj, Claudia, and Shellye Suttles. (2016). Trends in U.S. Agriculture’s Consumption and Production of Energy: Renewable Power, Shale Energy, and Cellulosic Biomass, EIB-159, U.S. Department of Agriculture, Economic Research Service, August 2016.

Honan, M., Feng, X., Tricarico, J., & Kebreab E. (2021). Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effec - tiveness, and safety. Animal Production Science, in press.

Hong, C., Burney, J. A., Pongratz, J., Nabel, J. E., Mueller, N. D., Jackson, R. B., & Davis, S. J. (2021). Global and regional drivers of land-use emissions in 1961–2017. Nature, 589(7843), 554-561.

Jaffe, A. M., Dominguez-Faus, R., Parker, N., Scheitrum, D., Wilcock, J., & Miller, M. (2016). The feasibility of renewable natural gas as a large-scale, low carbon substi - tute. California Air Resources Board Final Draft Report Contract, (13-307).

Janovicek, K., Hooker, D., Weersink, A., Vyn, R., & Deen, B. (2021). Corn and soybean yields and returns are greater in rotations with wheat. Agronomy Journal. doi: 10.1002/agj2.20684Kirkby, C. A., J.A. Kirkegaard, A.E. Richardson, L.J. Wade, C. Blanchard, and G. Batten. 2011. Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma, 163:197–208. doi: 10.1016/j.geoderma.2011.04.010

Jung, H.J.G., Samac, D.A., & Sarath, G. (2012). Modifying crops to increase cell wall digestibility. Plant Science, 185–186, 65-77.

Kaye, J. P., & Quemada, M. (2017). Using cover crops to mitigate and adapt to cli - mate change. A review. Agronomy for Sustainable Development, 37(1), 4. https://doi. org/10.1007/s13593-016-0410-x

Kebreab, E, Liedke A, Caro D, Deimling S, Binder M, Finkbeiner M. (2016). Environ - mental impact of using specialty feed ingredients in swine and poultry production: A life cycle assessment. Journal of Animal Science, 94, 2664-2681.Jones, A.K., Jones, 47

Kebreab, E., Waghorn G., Dijkstra, J., & Oosting, S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, 7(s2), 220–234.

Khokhar, T. (2017). Chart: Globally, 70% of freshwater is used for agriculture. World Bank Opendata. Retrieved from https://blogs.worldbank.org/opendata/chart-global - ly-70-freshwater-used-agriculture

Kim, D., Parajuli, R., & Thoma, G. J. (2020). Life cycle assessment of dietary patterns in the United States: A full food supply chain perspective. Sustainability, 12(4), 1586.

King, A. E., & Blesh, J. (2018). Crop rotations for increased soil carbon: Perenniality as a guiding principle. Ecological Applications, 28(1), 249–261. https://doi.org/10.1002/ eap.1648

Kyveryga, P.M., Laboski, C., McGrath, J., Meisinger, J., Melkonian, J.J., Moebius-Clune, B.N., Nafziger, E., Osmond, D., Sawyer, J., Scharf, P., Smith, W., Spargo, J., Van Es, H., & Yang, H. (2018). Strengths and Limitations of Nitrogen Recommendations, Tests, and Models for Corn. Agronomy Journal, 110(1):1-14. doi: 10.2134/agronj2017.02.0112

LaCanne, C. E., & Lundgren, J. G. (2018). Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ, 6, e4428. https://doi. org/10.7717/peerj.4428

Lal, R. (2003). Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect. Critical Reviews in Plant Sciences, 22(2), 151–184. https://doi. org/10.1080/713610854

Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22.

Lammers, P.J., Honeyman, M.S., Harmon, & J.D., Helmers, M.J. (2010). Energy and carbon inventory of Iowa swine production facilities. Agricultural Systems, 103(8), 551-561.

Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), 6707. https://doi. org/10.1038/ncomms7707

Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26(1), 261–273. https://doi.org/10.1111/ gcb.14859

Legesse, G., Beauchemin, K.A., Ominski, K.H, McGeough, E.J., Kroebel, R., MacDonald, S., Little, S.M., & McAllister, T.A. (2015). Greenhouse gas emissions of Canadian beef production in 1981 as compared with 2011. Animal Production Science, 56, 153-168.

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069

Lehmann, J., & Rondon, M. (2006). Bio-Char Soil Management on Highly Weathered Soils in the Humid Tropics. Biological Approaches to Sustainable Soil Systems.

Leigh, R. A., & Johnston, A. E. (1994). Long-term experiments in agricultural and eco - logical sciences (p. 448pp). CABI International, Wallingford, Oxon (CABI). https:// repository.rothamsted.ac.uk/item/870v2/long-term-experiments-in-agricultur - al-and-ecological-sciences

Li, R. (2019). Nearly 80% of US incinerators located in marginalized communities, report reveals. Waste Dive. Retrieved from https://www.wastedive.com/news/near - ly-80-of-us-incinerators-located-in-marginalized-communities-report-re/563433/

Li, Y., Li, Z., Chang, S. X., Cui, S., Jagadamma, S., Zhang, Q., & Cai, Y. (2020). Residue retention promotes soil carbon accumulation in minimum tillage systems: Implica - tions for conservation agriculture. Science of The Total Environment, 740, 140147. https://doi.org/10.1016/j.scitotenv.2020.140147

Liang, C., & Zhu, X. (2021). The soil Microbial Carbon Pump as a new concept for terrestrial carbon sequestration. Science China-Earth Sciences, 64(4), 545–558. https://doi.org/10.1007/s11430-020-9705-9

Liang, C., Amelung, W., Lehmann, J., & Kaestner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25(11), 3578–3590. https://doi.org/10.1111/gcb.14781

Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8), 17105. https:// doi.org/10.1038/nmicrobiol.2017.105

Lipinski, B., Hanson, C., Waite, R., Searchinger, T., & Lomax, J. (2013). Reducing Food Loss and Waste. Retrieved July 19, 2021, from https://files.wri.org/d8/s3fs-public/ reducing_food_loss_and_waste.pdf

Liu, T., Bruins, R. J. F., & Heberling, M. T. (2018). Factors Influencing Farmers’ Adop - tion of Best Management Practices: A Review and Synthesis. Sustainability, 10(2), Article 2. https://doi.org/10.3390/su10020432 Luján Soto, R., Martínez-Mena, M., Cuéllar Padilla, M., & de Vente, J. (2021). Restoring soil quality of woody agroecosystems in Mediterranean drylands through regener - ative agriculture. Agriculture, Ecosystems & Environment, 306, 107191. https://doi. org/10.1016/j.agee.2020.107191

Liu, Z., Kiarie, E.G., Edwards, A.M., Mandell, I., Karrow, N., Tulpan, D., & Widowski, T.M. (2021). In pursuit of a better broiler: growth, efficiency, and mortality of 16 strains of broiler chickens. Poultry Science, 100, 100955.

Long, S. P., Paustian, K., Qin, Z., Sheehan, J. J., Smith, P., Wang, M. Q., & Lynd, L. R. (2020). Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences, 117(36), 21968–21977. https://doi.org/10.1073/pnas.1920877117 General Mills. (2021, September 8). Regenerative Agriculture. General Mills. http:// www.generalmills.com/en/Responsibility/Sustainability/Regenerative-agriculture

Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 139(1), 224–231. https://doi.org/10.1016/j.agee.2010.08.006

Lynd, L. R. (2020). Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences, 117(36), 21968-21977.

McCaslin, M., Weakley, D., Temple, S., & Reisen, P. (2015). New technologies in alfalfa. WCDS Advances in Dairy Technology, 27, 215-222.

McClelland, S. C., Paustian, K., & Schipanski, M. E. (2021). Management of cover crops in temperate climates influences soil organic carbon stocks: A meta-analysis. Ecological Applications, 31(3). https://doi.org/10.1002/eap.2278

McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diver - sity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications: A Publication of the Ecological Society of America, 24(3), 560–570. https://doi.org/10.1890/13-0616.1

Messina, C. D., Sinclair, T. R., Hammer, G. L., Curan, D., Thompson, J., Oler, Z., Gho, C., & Cooper, M. (2015). Limited-transpiration trait may increase maize drought tolerance in the US Corn Belt. Agronomy Journal, 107(6):1978–1986. https://doi. org/10.2134/agronj15.0151

Milchunas, D. G., & Lauenroth, W. K. (1993). Quantitative Effects of Grazing on Vegetation and Soils Over a Global Range of Environments. Ecological Monographs, 63(4), 327–366. https://doi.org/10.2307/2937150

Milchunas, D.G., & Vandever, M.W. (2013). Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland. Journal of Arid Environment, 92, 81–88.

Miller, P. R., Gan, Y., McConkey, B. G., & McDonald, C. L. (2003). Pulse crops for the Northern Great Plains: II. Cropping sequence effects on cereal, oilseed, and pulse crops. Agronomy Journal, 95:980–986. https://doi.org/10.2134/agronj2003.0980

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., ... & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59-86.

Miner, G. L., Delgado, J. A., Ippolito, J. A., Stewart, C. E., Manter, D. K., Del Grosso, S. J., Floyd, B. A., & D’Adamo, R. E. (2020). Assessing manure and inorganic nitrogen fertilization impacts on soil health, crop productivity, crop quality in a continuous maize agroecosystem. Journal of Soil and Water Conservation, 75:481–498. https:// doi.org/10.2489/jswc.2020.0023

Mirsky, S. (2018). Energy use and greenhouse gas emissions in organic and conven - tional grain crop production: accounting for nutrient inflows. Agricultural Systems, 162, 89-96.

Mitchell, C., & Osmond, D. (2012). New technology and alternative nitrogen sources for crops in the Southern U.S. (Southern Cooperative Series Bulletin No. 416-0). Alabama Agricultural Experiment Station. ISBN# 1-58161-416-0.

Mohammadi, R., Haghparast, R., Amri, A., & Ceccarelli, S. (2010). Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop and Pasture Science, 61:92–101. https://doi.org/10.1071/CP09091

Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society B: Biological Sciences, 281:277-294. https://doi.org/10.1098/rstb.1977.0140.

Montes, F., Meinen, R., Dell, C., Rotz, A., Hristov, A.N., Oh, J., Waghorn, G., Gerber, P.J., Henderson B., Makkar, H.P.S., & Dijkstra, J. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Journal of Animal Science, 91, 5095–5113.

Montes, F., Oh, J., Kebreab, E., Oosting, S.J., Gerber, P.J., Henderson, B., Makkar, H.P.S., & Firkins, J.R. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science, 91, 5095–5113.

Moraes, L.E., Strathe, A.B., Fadel, J.G., Casper, D.P., Kebreab, E. (2014). Prediction of enteric methane emissions from cattle. Global Change Biology, 20, 2140–2148.

Mosier, S., Apfelbaum, S., Byck, P., Calderon, F., Teague, R., Thompson, R., & Cotrufo, M. F. (2021). Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands. Journal of Environmental Management, 288, 112409. https://doi.org/10.1016/j. jenvman.2021.112409

Mottet, A., De Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Live - stock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1-8. doi: 10.1016/j.gfs.2017.01.001 NRDC. (2019). Food Scrap Recycling Assessment: Baltimore - Report. Retrieved January 15, 2021, from https://www.nrdc.org/sites/default/files/balti - more-food-scrap-recycling-assessment-report.pdf

Murchie, E.H., & Niyogi, K.K. (2011). Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155(1):86-92. doi: 10.1104/pp.110.168831.

Murph, R., Pague, C., Rangwala, I., Ray, D., Rondeau, R., Schultz, T., & Sullivan, T. (2020). Cattle, conservation, and carbon in the western Great Plains. Journal of Soil and Water Conservation 75, 5A-12A.

Nalley, L.L., A. Barkley, F. Chumley. (2008). The impact of the Kansas wheat breeding program on wheat yields, 1911-2006. J. Agric. Appl. Econ, 40:913–925. doi: 10.1017/ S1074070800002418.

Naranjo, A., Johnson, A., Rossow, H., & Kebreab, E. (2020). Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years. Journal of Dairy Science, 103, 3760 -3773.

Narcy, A. (2013). Reducing the environmental impact of poultry breeding by genetic selection. Journal of Animal Science, 91, 613-622.

Nash, P.R., P.P. Motavalli, and K.A. Nelson. (2012). Nitrous oxide emissions from clay - pan soils due to nitrogen fertilizer source and tillage/fertilizer placement practices. Soil Sci. Soc. Am. J., 76, doi: 10.2136/sssaj2011.0296.

Newton, P., Civita, N., Frankel-Goldwater, L., Bartel, K., & Johns, C. (2020). What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Frontiers in Sustainable Food Systems, 4. https://doi. org/10.3389/fsufs.2020.577723

Nguyen, T.T.H., Bouvarel, I., Ponchant, P., & van der Werf, H.M.C. (2012). Using environmental constraints to formulate low-impact poultry feeds. Journal of Cleaner Production, 28, 215-224.

Ogle, S. M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F. J., McConkey, B., Regina, K., & Vazquez-Amabile, G. G. (2019). Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emis - sions. Scientific Reports, 9(1), 11665. https://doi.org/10.1038/s41598-019-47861-7

Ogle, S. M., Breidt, F. J., & Paustian, K. (2005). Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temper - ate and tropical regions. Biogeochemistry, 72(1), 87–121. https://doi.org/10.1007/ s10533-004-0360-2

Overton, J. (2019). EESI Fact Sheet | The Growth in Greenhouse Gas Emissions from Commercial Aviation | White Papers | EESI. Retrieved from https://www.eesi.org/ papers/view/fact-sheet-the-growth-in-greenhouse-gas-emissions-from-commer - cial-aviation

Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Envi - ronment, 187, 87–105. https://doi.org/10.1016/j.agee.2013.10.010

Parker, N., Williams, R., Dominguez-Faus, R., & Scheitrum, D. (2017). Renewable natu - ral gas in California: An assessment of the technical and economic potential. Energy Policy, 111, 235-245.

Parton, W. J. (2015). Formation of soil organic matter via biochemical and physi - cal pathways of litter mass loss. Nature Geoscience, 8(10), 776–779. https://doi. org/10.1038/ngeo2520

Paul, E. A., Paustian, K. H., Elliott, E. T., & Cole, C. V. (1996). Soil Organic Matter in Temperate Agroecosystems: Long Term Experiments in North America. In The Role of Soil Organic Matter in Agricultural Systems and Global Change. CRC Press.

Paustian, K. (2014). Carbon sequestration in soil and vegetation and greenhouse gases emissions reduction. Global Environmental Change, 1, 399–406.

Paustian, K., Collins, H. P., & Paul, E. A. (1997). Management Controls on Soil Carbon. In Soil Organic Matter in Temperate Agroecosystems. CRC Press.

Paustian, K., Easter, M., Brown, K., Chambers, A., Eve, M., Huber, A., Marx, E., Layer, M., Stermer, M., Sutton, B., Swan, A., Toureene, C., Verlayudhan, S., & Williams, S. (2017). Field- and farm-scale assessment of soil greenhouse gas mitigation using COMET-Farm. In Precision Conservation: Geospatial Techniques for Agricultural and Natural Resources Conservation (pp. 341–359). John Wiley & Sons, Ltd. https://doi. org/10.2134/agronmonogr59.c16

Paustian, K., J.M. Antle, J. Sheehan, and E.A. Paul. (2006). Agriculture’s Role in Green - house Gas Mitigation. Arlington, VA: Pew Center on Global Climate Change. 76 pp. Reuters News Service 2021. https://www.reuters.com/article/usa-agriculture-car - bon-idAFL2N2L1012

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), Article 7597. https://doi.org/10.1038/na - ture17174

Pearson, P. (2018). No Food Left Behind, Part 1: Underutilized Produce Ripe for Alternative Markets. World Wildlife Fund. Retrieved from https://www.worldwildlife. org/publications/no-food-left-behind-part-1-underutilized-produce-ripe-for-alter - native-markets

Pellegrini, P., & Fernández, R. J. (2018). Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Pro - ceedings of the National Academy of Sciences, 115(10), 2335-2340.

Pelletier, N. (2017). Life cycle assessment of Canadian egg products, with differenti - ation by hen housing system type. Journal of Cleaner Production, 152, 167-180.

Pelletier, N., Ibarburu, M., & Xin, H. (2013). A carbon footprint analysis of egg pro - duction and processing supply chains in the Midwestern United States. Journal of Cleaner Production, 54, 108-114.

Pelletier, N., Ibarburu, M., & Xin, H. (2014). Invited Review: Comparison of the environmental footprint of the egg industry in the United States in 1960 and 2010. Poultry Science, 93, 241-255.

Pelletier, N., Lammers, P., Stender, D., & Pirog, R. (2010). Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production sys - tems in the Upper Midwestern United States. Agricultural Systems, 103(9), 559-608.

Penkert, L. P., Li, R., Huang, J., Gurcan, A., Chung, M. C., Wallace, T. C., & Chung, M. (2021). Pork consumption and its relationship to human nutrition and health: A scop - ing review. Meat and Muscle Biology, 5(1).

Pereira, R. C., Hedley, M. J., Arbestain, M. C., Bishop, P., Enongene, K. E., Otene, I. J. J., Pereira, R. C., Hedley, M. J., Arbestain, M. C., Bishop, P., Enongene, K. E., & Otene, I. J. J. (2017). Evidence for soil carbon enhancement through deeper mouldboard ploughing at pasture renovation on a Typic Fragiaqualf. Soil Research, 56(2), 182–191. https://doi.org/10.1071/SR17039

Peterson, C. A., Bell, L. W., Carvalho, P. C. de F., & Gaudin, A. C. M. (2020). Resilience of an Integrated Crop–Livestock System to Climate Change: A Simulation Analysis of Cover Crop Grazing in Southern Brazil. Frontiers in Sustainable Food Systems, 4, 222. https://doi.org/10.3389/fsufs.2020.604099

Peterson, C.B., El Mashad, H.M., Zhao, Y., Pan, Y., & Mitloehner, F.M. (2020). Effects of SOP lagoon additive on gaseous emissions from stored liquid dairy manure. Sustainability, 12(4), 1393.

Pimentel, D. (2019). Handbook of energy utilization in agriculture. CRC press.

Pimentel, D., & Burgess, M. (2013). Soil Erosion Threatens Food Production. Agricul - ture, 3, 443–463. https://doi.org/10.3390/agriculture3030443

Pimentel, D., Pimentel, M., & Karpenstein-Machan, M. (1999). Energy use in agricul - ture: an overview. Agricultural Engineering International: CIGR Journal.

Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33–41. https://doi.org/10.1016/j.agee.2014.10.024

Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992. https://doi.org/10.1126/ science.aaq0216 ReFED. (2016). A Roadmap to Reduce U.S. Food Waste by 20 Percent. ReFED. https://www.refed.com/downloads/ReFED_Report_2016.pdf ReFED. (2021a). Roadmap to 2030: Reducing U.S. Food Waste by 50% and the ReFED Insights Engine. Retrieved from https://refed.org/uploads/refed_road - map2030-FINAL.pdf ReFED. (2021b). Roadmap to 2030: Reducing U.S. Food Waste by 50% and the ReFED Insights Engine. Retrieved from https://insights.refed.org/uploads/refed_ roadmap2030-FINAL.pdf ReFED, (2021c), Insights Engine. https://insights.refed.org/ ReFED. (2021d). Solution Database. Available at: https://insights-ngine.refed.org/ solution-database?dataView=total&indicator=us-dollars-profit [Accessed 27 Apr. 2023]. ReFED. (2021e). Solution database: Livestock Feed. Retrieved [Accessed 27 Apr. 2023] from https://insights-engine.refed.org/solution-database/livestock-feed

Putman, B., Hickman, J., Bandekar, P., Matlock, M., & Thoma, G. (2018). A retro - spective assessment of US pork productions: 1960 to 2015. University of Arkansas Resiliency Center. Available: https://scholarworks.uark.edu/rescentfs/2

Putnam, B., Thoma, G., Burek, J., & Matlock, M. (2017). A retrospective analysis of the United States poultry industry: 1965 compared with 2020. Agricultural Systems, 157, 107-117.

Rabbitt, M. P., Hales, L. J., Burke, M. P., & Coleman-Jensen, A. (2023). Household food security in the United States in 2022.

Rayner, A.C., Newberry, R.C., Vas, J., & Mullan, S. (2020). Slow-growing broilers are healthier and express more behavioural indicators of positive welfare. Scientific Report, 10, 15151.

Rees, R. M., & Smith, P. (2019). A critical review of the impacts of cover crops on ni - trogen leaching, net greenhouse gas balance and crop productivity. Global Change Biology, 25(8), 2530–2543. https://doi.org/10.1111/gcb.14644 Alcántara, V., Don, A., Well, R., & Nieder, R. (2016). Deep ploughing increases agricul - tural soil organic matter stocks. Global Change Biology, 22(8), 2939–2956. https:// doi.org/10.1111/gcb.13289

Reichstein, M., Schimel, J. P., Torn, M. S., Wieder, W. R., & Kögel-Knabner, I. (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geosci - ence, 13(8), 529–534. https://doi.org/10.1038/s41561-020-0612-3

Rosenzweig, C. (2018). Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change. Agricultural & Environmental Letters, 3(1), 180026. https:// doi.org/10.2134/ael2018.05.0026

Rosenzweig, C., J. Antle, and J. Elliott (2016), Assessing impacts of climate change on food security worldwide, Eos, 97, doi:10.1029/2016EO047387. Published on 9 March 2016.

Rosenzweig, C., J.W. Jones, J.L. Hatfield, A.C. Ruane, K.J. Boote, P. Thorburn, J.M. Antle,G.C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, and J.M. Winter. (2013). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies. Ag. For. Meteor. 170:166- 182.

Rotz, C. A., Asem-Hiablie, S., Place, S., & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. Agricultural systems, 169, 1-13.

Rowntree, J.E., Stanley, P.L., Maciel, I.C.F., Thorbecke, M., Rosenzweig, S.T., Hancock, D.W., Guzman, A., & Raven, M.R. (2020). Ecosystem impacts and productive capacity of a multi-species pastured livestock system. Frontiers in Sustainable Food Systems, 4, 544984.

Ruark, M. D., Brouder, S. M., & Turco, R. F. (2009). Dissolved Organic Carbon Losses from Tile Drained Agroecosystems. Journal of Environmental Quality, 38(3), 1205–1215. https://doi.org/10.2134/jeq2008.0121

Ryals, R. (2021). Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions. Global Change Biology, 27, 1721-1736. De Verdal, H., Mignon-Grasteau, S., Bastinaelli, D., Même, N., Le Bihan-Duval, E., &

Sadatshojaei, E., Wood, D. A., & Rahimpour, M. R. (2021). Potential and challenges of carbon sequestration in soils. Applied Soil Chemistry, 1-21.

Saitone, T. L., Schaefer, K. A., Scheitrum, D., Arita, S., Breneman, V., Nemec Boehm, R., & Maples, J. G. (2024). Consolidation and concentration in US meat processing: Up - dated measures using plant-level data. Review of Industrial Organization, 64(1), 35-56.

Salton, J. C., Mercante, F. M., Tomazi, M., Zanatta, J. A., Concenço, G., Silva, W. M., & Retore, M. (2014). Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agriculture, Ecosystems & Environment, 190, 70–79. https://doi.org/10.1016/j.agee.2013.09.023

Scanlan, C. A., & Davies, S. L. (2019). Soil mixing and redistribution by strategic deep tillage in a sandy soil. Soil and Tillage Research, 185, 139–145. https://doi. org/10.1016/j.still.2018.09.008

Schanzenbach, D. W. (2020). Not Enough to Eat: COVID-19 Deepens America’s Hunger Crisis. Food Research and Action Center. Available at: https://frac.org/ wp-content/uploads/Not-Enough-to-Eat-COVID-19-Deepens-Americas-Hunger- Crisis.pdf

Schlegel, A. (2018). Can cover or forage crops replace fallow in the semiarid Central Great Plains? Crop Science, 58(2):932-944.

Schlegel, A., Edwards, J.T., Marburger, D., Alderman, P., & Lollato, R.P. (2020). Explor - ing long-term variety performance trials to improve environment-specific genotype × management recommendations: A case-study for winter wheat. Field Crops Research, 255, 107848. doi: 10.1016/j.fcr.2020.107848

Schlesinger, W. H., & Amundson, R. (2019). Managing for soil carbon sequestration: Let’s get realistic. Global Change Biology, 25(2), 386–389. https://doi.org/10.1111/ gcb.14478Schweigert, M., Herrmann, S., Miltner, A., Fester, T., & Kästner, M. (2015). Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biology and Biochemistry, 88, 120–127. https:// doi.org/10.1016/j.soilbio.2015.05.012

Scialabba, N. E. (2015). Food wastage footprint & Climate Change. Rome: FAO. Retrieved July 13, 2021, from http://www.fao.org/3/i3347e/i3347e.pdf

Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Matthews, E. (2019). Creating a Sustainable Food Future. World Resources Institute. Retrieved from https://re - search.wri.org/sites/default/files/2019-7/WRR_Food_Full_Report_0.pdf

Singh, K. M., & Meena, M. (2013). Economics of Conservation Agriculture: An Over - view (SSRN Scholarly Paper ID 2318983). Social Science Research Network. https:// doi.org/10.2139/ssrn.2318983

Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. 22.

Six, J., Elliott, E. T., & Paustian, K. (2000). Soil macroaggregate turnover and micro - aggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32(14), 2099–2103. https://doi.org/10.1016/S0038- 0717(00)00179-6 Soil Health | NRCS Soils. (n.d.). USDA NRCS. Retrieved March 27, 2021, from https:// www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/

Skorek-Osikowska, A., Martín-Gamboa, M., & Dufour, J. (2020). Thermodynamic, economic and environmental assessment of renewable natural gas production systems. Energy Conversion and Management: X, 7, 100046.

Skytt, T., Nielsen, S. N., & Jonsson, B. G. (2020). Global warming potential and abso - lute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability–A case study of Jämtland, Sweden. Ecological Indicators, 110, 105831.

Sokol, N. W., Kuebbing, Sara. E., Karlsen-Ayala, E., & Bradford, M. A. (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221(1), 233–246. https://doi.org/10.1111/nph.15361

Sperow, M. (2016). Estimating carbon sequestration potential on U.S. agricul - tural topsoils. Soil and Tillage Research, 155, 390–400. https://doi.org/10.1016/j. still.2015.09.006

Sperow, M. (2020). Updated potential soil carbon sequestration rates on U.S. agricultural land based on the 2019 IPCC guidelines. Soil and Tillage Research, 204, 104719. https://doi.org/10.1016/j.still.2020.104719

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., ... & Godfray, H. C. (2018). Options for keeping the food system within environmen - tal limits. Nature, 562(7728), 519-525.

Steiner, J.L., Franzluebbers, A.J., Neely, C., Ellis T., & Aynekulu, E. (2014). Enhancing soil and landscape quality in smallholder grazing systems. In: R. Lal, & B.A. Stewart (Eds.), Soil Management of Smallholder Agriculture (pp. 63-111). Advances in Soil Science. Boca Raton, Florida: CRC Press.

Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., & De Haan, C. (2006). Live - stock’s long shadow: environmental issues and options. Food & Agriculture Org..

Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., & Six, J. (2007). Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry, 86(1), 19–31. https://doi.org/10.1007/s10533-007-9140-0

Stone, J.J., Dollarhide, C.R., Benning, J.L., Carlson, C.G., & Clay, D.E. (2012). The life cycle impacts of feed for modern grow-finish Northern Great Plains US swine pro - duction. Agricultural Systems, 106, 1-10.

Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., & Huang, Y. (2020). Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 26(6), 3325–3335. https:// doi.org/10.1111/gcb.15001

Tallaksen, J., Johnston, L., Sharpe, K., Reese, M., & Buchanan, E. (2020). Reducing life cycle fossil energy and greenhouse gas emissions for Midwest swine production systems. Journal of Clean. Production, 246, 118998.

Thoma, G., Popp, J., Shonnard, D., Nutter, D., Matlock, M., Ulrich, R., Kellogg, W., Kim, D.S., Neiderman, Z., Kemper, N., Adom, F., & East, C. (2013). Regional analysis of greenhouse gas emissions from USA dairy farms: A cradle to farm-gate assessment of the American dairy industry circa 2008. International Dairy Journal, 31, S29–S40.

Toensmeier, E. (2016). The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture. Chelsea Green Publishing. United Nations Framework Convention on Climate Change (UNFCCC). Koronivia Joint Work on Agriculture. Workshops and Expert Meetings. UNFCCC, 2021. Avail - able at: https://www.fao.org/koronivia/en/ van der Pol, L., Robertson, A., Schipanski, M., Calderon, F., Wallenstein, M. D., &

Tubiello, F., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2014). Agricul - ture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks: 1990-2011 Analysis. doi: 10.13140/2.1.4143.4245.

Uddin, M.E., & Kebreab, E. (2020). Review: Impact of food and climate change on pastoral industries. Frontiers in Sustainable Food Systems, 4, 543403 United Nations Department of Economic and Social Affairs, Population Division. (2019). World Population Prospects. 2019: Highlights. https://population.un.org/ wpp/Publications/Files/WPP2019_Highlights.pdf UN FAO. (2009). How to feed the world in 2050. Available: http://www.fao.org/ fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.

USDA, (2020). Food Waste FAQs. Accessed December 11, 2020. Available at: https://www.usda.gov/foodwaste/faqs.

USDA, (2021b). USDA Announces Cooperative Agreements for Community Com - post and Food Waste Reduction. Retrieved from https://www.usda.gov/topics/ urban/coop-agreements UNEP (2021), Global Methane Assessment: Benefits and Costs of Mitigating Meth - ane Emissions. UNEP - UN Environ. Programme (2021). Available at: https://www. unep.org/resources/report/global-methane-assessment-benefits-and-costs-miti - gating-methane-emissions (Accessed: May 15, 2021). US EPA, (2016). Wasted Food Programs and Resources Across the United States. US

USDA. (2013). U.S. hog production from 1992 to 2009: technology, restructuring, and productivity growth. Economic Research Report No. 158. https://www.ers.usda. gov/webdocs/publications/45148/40364_err158.pdf?v=0

USDA. (2019). Largest Decline in U.S. Dairy Farms in 15-Plus Years in 2019. https:// www.fb.org/market-intel/largest-decline-in-u.s.-dairy-farms-in15-plus-years-in-2019

USDA. (2021). Sheep and Goats. https://www.nass.usda.gov/Publications/Todays_ Reports/reports/shep0121.pdf.

USEPA (2024) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022. U.S. Environmental Protection Agency, EPA 430-R-24-004. https://www.epa.gov/ ghgemissions/inventory-us-greenhouse-gas-emissions-andsinks-1990-2022.

USEPA (2024) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022. U.S. Environmental Protection Agency, EPA 430-R-24-004. https://www.epa.gov/ ghgemissions/inventory-us-greenhouse-gas-emissions-andsinks-1990-2022. von Keyserlingk, M.A.G., Martin, N.P., Kebreab, E., Knowlton, K.F., Grant, R.J., Stephen - son, M., Sniffen, C.J., Harner, III J.P., Wright, A.D., & Smith, S.I. (2013). Invited Review: Sustainability of the U.S. dairy industry. Journal of Dairy Science, 96, 5405-5425.

USEPA, 2021. Inventory of US Greenhouse Gas Emissions and Sinks. EPA 430-R-21- 005. USEPA, Washington, DC. van der Zwaan, B., Detz, R., Meulendijks, N., & Buskens, P. (2021). Renewable natural gas as climate-neutral energy carrier?. Fuel, 122547.

Vitali, A., & Camillo, D.C. (2015). Life cycle assessment in the livestock and derived edible products sector. In B. Notarnicola, R. Salomone, L. Petti, P. Renzulli, R. Roma, & A. Cerutti (Eds.), Life cycle assessment in the agri-food sector (pp. 185-250). Bologna: Springer.

Vochozka, M., Maroušková, A., Váchal, J., & Straková, J. (2016). Biochar pricing hampers biochar farming. Clean Technologies and Environmental Policy, 18(4), 1225–1231. https://doi.org/10.1007/s10098-016-1113-3

Walker, S. B., Sun, D., Kidon, D., Siddiqui, A., Kuner, A., Fowler, M., & Simakov, D. S. (2018). Upgrading biogas produced at dairy farms into renewable natural gas by methanation. International Journal of Energy Research, 42(4), 1714-1728.

Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy, 8(3), 512–523. https://doi. org/10.1111/gcbb.12266

West, T. O., & Post, W. M. (2002). Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Science Society of America Journal, 66(6), 1930–1946. https://doi.org/10.2136/sssaj2002.1930

Wolfe, M. L., & Richard, T. L. (2017). 21st century engineering for on-farm food–ener - gy–water systems. Current Opinion in Chemical Engineering, 18, 69-76.

Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., & Griscom, B. W. (2020). The 16

Xie, Y., Hou, Z., Liu, H., Cao, C., & Qi, J. (2021). The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China’s carbon neutrality by 2060. Environmental Earth Sciences, 80(14), 1-17.

Xu, H., Cai, A., Wu, D., Liang, G., Xiao, J., Xu, M., Colinet, G., & Zhang, W. (2021). Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis. Soil and Tillage Research, 213, 105125. https://doi.org/10.1016/j. still.2021.105125

Xu, S., Silveira, M.L., Sollenberger, L.E., Viegas, P., Lacerda, J.J.J., & Azenha, M.V. (2018). Conversion of native rangelands into cultivated pasturelands in subtropical ecosystems: Impacts on aggregate-associated carbon and nitrogen. Journal of Soil and Water Conservation, 73, 156-163.

Yaffe-Bellany, D., & Corkery, M. (2020). Dumped milk, smashed eggs, plowed veg - etables: Food waste of the pandemic. New York Times. Retrieved January 10, 2021, from https://www.nytimes.com/2020/04/11/business/coronavirus-destroying-food. html 60

Yuan, L., Li, Z., Chang, S. X., Cui, S., Jagadamma, S., Zhang, Q., & Cai, Y. (2020). Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture | Elsevier Enhanced Reader. Science of The Total Environment, 740(140147). https://doi.org/10.1016/j.scitotenv.2020.140147

Zhou, G., Zhou, X., He, Y., Shao, J., Hu, Z., Liu, R., Zhou, H., & Hosseinibai, S. (2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Global Change Biology, 23(3), 1167–1179. https://doi.org/10.1111/gcb.13431 18

Zuidhof, M.J., Schneider, B.L., Carney, V.L., Korver, D.R., & Robinson, F.E. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science, 93, 2970-2982. 48

Zurek, M., Hebinck, A. ., & Selomane, O. (2021). Looking across diverse food system futures: Implications for climate change and the environment. Q Open, Volume 1, Issue 1, January 2021, qoaa001, https://doi.org/10.1093/qopen/qoaa001 68

Downloads

Additional Files

Published

2024-11-12

Issue

Section

Special Publications

How to Cite

Rice, C. W., Stackhouse-Lawson, K., Thompson, L., Richard, T. L., Thoma, G., Anex, R., Nichols-Vinueza, A., Borland, J., Prezkop, L., Kebreab, E., Lollato, R. P., Osmond, D., Matlock, M. D., Ellis, E., Swan, A., Paustian, K., Robertson, G. P., Basso, B., Hatfield, J. L., … Pearson, P. (2024). Potential for U.S. Agriculture to Be Greenhouse Gas Negative. Council for Agricultural Science and Technology (CAST). https://doi.org/10.62300/tfraya48