AI in Agriculture: Opportunities, Challenges, and Recommendations
DOI:
https://doi.org/10.62300/IAAG042514Keywords:
Artificial intelligence, Machine learning, Precision agriculture, Digital agriculture, Agricultural automation, Decision support systems, Big data in agriculture, SustainabilityAbstract
Artificial intelligence (AI) is rapidly transforming agriculture by enabling data-driven decision-making, automation, and predictive analytics across the food and agricultural system. Advances in machine learning, computer vision, robotics, and sensor technologies have expanded the ability of producers, researchers, and agribusinesses to monitor crops and livestock, optimize inputs, and respond to environmental variability with unprecedented precision.
This report examines the current and emerging applications of AI in agriculture, including crop and livestock monitoring, precision management, yield prediction, disease and pest detection, automation, and supply chain optimization. It explores the data sources, algorithms, and digital infrastructure that underpin AI-driven systems, as well as the role of AI in enhancing sustainability, productivity, and resilience under climate and resource constraints.
The report also addresses key challenges associated with AI adoption in agriculture, including data quality and availability, model transparency, workforce readiness, cybersecurity, equity, and ethical considerations. By synthesizing recent research and real-world applications, this report provides an overview of how artificial intelligence can support more efficient, sustainable, and resilient agricultural systems, while highlighting research, policy, and extension needs critical for responsible and effective implementation.
Downloads
References
Ag Data Coalition (2025). https://agdatacoalition.org/. Accessed March 2, 2025.
AgGateway (2019). AgGateway case studies: Central Farm Service uses ADAPT to streamline processes in agronomy and operations. https://aggateway.org/Portals/1010/WebSite/About%20Us/CASE%20STUDY%20-%20Central%20Farm%20Services.pdf?ver=2019-02-14-034653-433. Accessed March 23, 2025.
Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry – a systematic literature review on agriculture 4.0. Smart Agricultural Technology 2(1):100042. https://doi.org/10.1016/j.atech.2022.100042.
Balaguer, A., Benara, V., de Freitas Cunha, R. L., Estevão Filho, R. D. M., Hendry, T., Holstein, D., ... & Chandra, R. (2024). RAG vs fine-tuning: Pipelines, tradeoffs, and a case study on agriculture. arXiv:2401.08406v3 [cs.CL]. https://doi.org/10.48550/arXiv.2401.08406.
Bampasidou, M., Goldgaber, D., Gentimis, T., & Mandalika, A. (2024). Overcoming 'Digital Divides': Leveraging higher education to develop next generation digital agriculture professionals. Computers and Electronics in Agriculture 224(1):109181. https://doi.org/10.1016/j.compag.2024.109181.
Banhazi, T. M., Lehr, H., Black, J. L., Crabtree, H., Schofield, P., Tscharke, M., & Berckmans, D. (2012). Precision Livestock Farming: An international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering 5 (3):1-9. https://doi.org/10.3965/j.ijabe.20120503.001.
Baptista, E. (2025). Beijing boosts AI startup Manus, as China looks for the next DeepSeek. https://www.reuters.com/technology/artificial-intelligence/beijing-boosts-ai-startup-manus-china-looks-next-deepseek-2025-03-21/. Accessed March 22, 2025.
Bissadu, K. D., Sonko, S., & Hossain, G. (2024). Society 5.0 enabled agriculture: Drivers, enabling technologies, architectures, opportunities, and challenges. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2024.04.003.
Bitko, G. (2024). Sustainable AI: an innovative future needs public-private partnership. Forbes. https://www.forbes.com/sites/gordonbitko/2024/10/10/sustainable-ai-an-innovative-future-needs-public-private-partnership/. Accessed March 2, 2025.
Buntz, B. (2025). Evo 2 AI promises to accelerate genetic engineering and synthetic biology. R&D World, February 19, 2025. https://www.rdworldonline.com/evo-2-ai-promises-to-accelerate-genetic-engineering-and-synthetic-biology/.
Campoverde-Molina, M., & Luján-Mora, S. (2024). Cybersecurity in smart agriculture: A systematic literature review. Computers & Security 150(1):104284. https://doi.org/10.1016/j.cose.2024.104284.
Crüwell, S., v. Doorn, J., Etz, A., Makel, M. C., Moshontz, H., Niebaum, J. C., Orben, A., Parsons, S., & Schulte-Mecklenbeck, M. (2019). Seven easy steps to open science. Zeitschrift für Psychologie 227(4):237-248. https://doi.org/10.1027/2151-2604/a000387.
Deere & Company (2022). Deere launches See & Spray™ Ultimate: in-season targeted spray technology combined with a dual product solution system for corn, soybeans, and cotton. https://www.deere.com/en/news/all-news/see-spray-ultimate. Accessed March 23, 2025.
Deere & Company (2024). John Deere announces strategic partnership with SpaceX to expand rural connectivity to farmers through satellite communications. https://www.deere.com/en/our-company/static/john-deere-partnership-with-spacex. Accessed March 23, 2025.
Douridas, A., Bruynis, C., Hawkins, E., Badertscher, B., Barker, J., Bennett, A., … & Zoller, C. (2019). eFields: connecting science to fields. In Proc. 22nd International Farm Management Congress. Launceston, Tasmania, Australia.
Dreo, G., Kotenko, I., Lechner, R., Rass, S., & Szalachowski, P. (2021). Cybersecurity and resilience in AI-based smart agriculture: Emerging threats and solutions. Journal of Cybersecurity Research 10(2):45-63. https://doi.org/10.1080/27685241.2021.2008777.
Duflock, W. (2023). Ag should prefer economic development grants over innovation and technology adoption grants. Medium. https://medium.com/@waltduflock/ag-should-prefer-economic-development-grants-over-innovation-and-technology-adoption-grants-64b737b2235d. Accessed February 23, 2025.
Ellis, J. L., Jacobs, M., Dijkstra, J., van Laar, H., Cant, J. P., Tulpan, D., & Ferguson, N. (2020). Review: Synergy between mechanistic modelling and data-driven models for modern animal production systems in the era of big data. Animal 14(S2):s223-s237. https://doi.org/10.1017/S1751731120000312.
Federal Communications Commission (2023). Report of the task force for reviewing the connectivity and technology needs of precision agriculture in the United States. https://www.fcc.gov/sites/default/files/2023-Report-FCC-Precision-Ag-Task-Force.pdf. Accessed February 23, 2025.
Federal Reserve Bank of St. Louis (2024). Contributions to percent change in real GDP by industry. https://fred.stlouisfed.org/series/CPGDPMA. Accessed March 22, 2025.
Feeney, I. (2023). The next generation of precision nutrition science. City Health Spring 2023. https://publications.sph.cuny.edu/city-health-2023/the-next-generation-of-precision-nutrition-science/.
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., … & Wang, H. (2024). Retrieval-augmented generation for large language models: A survey. arXiv:2312.10997v5 [cs.CL]. https://doi.org/10.48550/arXiv.2312.10997.
Garg, T., Dwivedi, P., Mishra, M. K., Joshi, N. C., Shrivastava, N., & Mishra, V. (2024). “Artificial intelligence in plant disease identification: Empowering agriculture.” Methods in Microbiology (Vol. 55, pp. 179-193). Academic Press. https://doi.org/10.1016/bs.mim.2024.05.007.
Gharakhani, H., Thomasson, J. A., Lu, Y., & Reddy, K. R. (2024). Field test and evaluation of an innovative vision-guided robotic cotton harvester. Computers and Electronics in Agriculture 225(1):109314. https://doi.org/10.1016/j.compag.2024.109314.
Giaretta, E., Cruz, J., & Fernandes, B. (2022). Artificial intelligence in cybersecurity for smart agriculture: A comprehensive review of current trends, cyber threats, AI applications, and ethical issues. Cybersecurity AI Journal 5(1):102-130. doi.org/10.1007/s10207-022-00657-x.
Gobbi, A., Acedo, A., Imam, N., Santini, R. G., Ortiz-Álvarez, R., Ellegaard-Jensen, L., ... & Hansen, L. H. (2022). A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs. Communications Biology 5(1):241. https://doi.org/10.1038/s42003-022-03202-5.
Halachmi, I., Guarino, M., Bewley, J., & Pastell M. (2019). Smart animal agriculture: Application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences 7(1):403-425. https://doi.org/10.1146/annurev-animal-020518-114851.
Haire, B. (2022). Building agriculture’s AI hub. Farm Progress. https://www.farmprogress.com/technology/building-agriculture-s-ai-hub. Accessed February 25, 2025.
Hu, C., Xie, S., Song, D., Thomasson, J. A., Hardin IV, R. G., & Bagavathiannan, M. (2022). Algorithm and system development for robotic micro-volume herbicide spray towards precision weed management. IEEE Robotics and Automation Letters 7(4):11633-11640. https://doi.org/10.1109/LRA.2022.3191240.
Hurlbut, J. B. (2025). Taking responsibility: Asilomar and its legacy. Science 387(6733):468-472. https://doi.org/10.1126/science.adv3132.
Inácio Patrício, D., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture 153(1):69–81. https://doi.org/10.1016/j.compag.2018.08.001.
Isinkaye, F. O., Olusanya, M. O., & Akinyelu, A. A. (2025). A Multi-class hybrid variational autoencoder and vision transformer model for enhanced plant disease identification. Intelligent Systems with Applications 26(1):200490. https://doi.org/10.1016/j.iswa.2025.200490.
Jain, R., & Sharma, P. (2021). The role of AI in precision agriculture and associated cybersecurity challenges. International Journal of Agricultural Research, Innovation and Technology 8(3):75-89. doi.org/10.1016/j.ijat.2021.05.004.
Janssen, S. J. C., Porter, C. H., Moore, A. D., Athanasiadis, I. N., Foster, I., Jones, J. W., & Antle, J. M. (2017). Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems 155(1):200-212. https://doi.org/10.1016/j.agsy.2016.09.017.
Janzen, D. (2024). New concepts in the updated core principles for ag data. https://www.aglaw.us/janzenaglaw/2024/5/16/highlights-from-the-updated-ag-data-core-principles. Accessed February 23, 2025.
John, A. J., Clark, C. E. Freeman, M. J. Kerrisk, K. L. Garcia, S. C., & Halachmi, I. (2016). Review: Milking robot utilization, a successful precision livestock farming evolution. Animal 10(9):1484-1492. https://doi.org/10.1017/s1751731116000495.
Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology 70(1):15–22. https://doi.org/10.1016/j.copbio.2020.09.003.
Klerkx, L., & Rose, D. (2020). Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security 24(1):100347. https://doi.org/10.1016/j.gfs.2019.100347.
Konara, B., Krishnapillai, M., & Galagedara, L. (2024). Recent trends and advances in utilizing digital image processing for crop nitrogen management. Remote Sensing 16(23):4514. https://doi.org/10.3390/rs16234514.
Kudashkina, K., Corradini, M. G., Thirunathan, P., Yada, R. Y., & Fraser, E. D. (2022). Artificial Intelligence technology in food safety: A behavioral approach. Trends in Food Science & Technology 123(1):376-381. https://doi.org/10.1016/j.tifs.2022.03.021.
Lecat, B., Brouard, J., & Chapuis, C. (2017). Fraud and counterfeit wines in France: An overview and perspectives. British Food Journal 119(1):84-104. https://doi.org/10.1108/BFJ-09-2016-0398.
Lee, C. L., Strong, R., Briers, G., Murphrey, T., Rajan, N., & Rampold, S. (2024). Factors predicting innovation-decisions: The effects of performance expectancy, social influence, and facilitating conditions on U.S. Extension’s promotion of precision agriculture technologies. NJAS: Impact in Agricultural and Life Sciences 96(1). https://doi.org/10.1080/27685241.2024.2420111.
Li, J., Xu, M., Xiang, L., Chen, D., Zhuang, W., Yin, X., & Li, Z. (2024). Foundation models in smart agriculture: Basics, opportunities, and challenges. Computers and Electronics in Agriculture 222(1):109032. https://doi.org/10.1016/j.compag.2024.109032.
Liu, Z., Wang, S., Zhang, Y., Feng, Y., Liu, J., & Zhu, H. (2023). Artificial intelligence in food safety: A decade review and bibliometric analysis. Foods 12(6):1242.
Lu, Y., & Lu, R. (2018). Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithms. Trans. American Society of Agricultural and Biological Engineers 61(6):1831-1842. https://doi.org/10.13031/trans.12930.
Mallinger, K., & Baeza-Yates, R. (2024). Responsible AI in farming: a multi-criteria framework for sustainable technology design. Applied Sciences 14(1):437. https://doi.org/10.3390/app14010437.
Maslej, N. et al. (2024). Artificial intelligence index report 2024, Human-Centered Artificial Intelligence. https://coilink.org/20.500.12592/h70s46h. Accessed on February 23, 2025.
Metz, C., & Isaac, M. (2025). Meta engineers see vindication in DeepSeek’s apparent breakthrough. https://www.nytimes.com/2025/01/29/technology/meta-deepseek-ai-open-source.html. Accessed February 28, 2025.
Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko A. (2022). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things Journal 9(9):6305-6324. https://doi.org/10.1109/JIOT.2020.2998584.
Mississippi State University (2024). Social and economic impacts of agricultural autonomy on small farms: status and recommendations. USDA National Institute for Food and Agriculture. https://portal.nifa.usda.gov/enterprise-search/ss/2241. Accessed February 25, 2025.
Morota, G., Ventura, R. V., Silva, F. F., Koyama, M., & Fernando, S. C. (2018). Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. Journal of Animal Science 96(4):1540-1550. https://doi.org/10.1093/jas/sky014.
Mukkavilli, S. K., Civitarese, D. S., Schmude, J., Jakubik, J., Jones, A., Nguyen, N., … & Weldemariam, K. (2023). AI foundation models for weather and climate: Applications, design, and implementation. arXiv:2309.10808v2 [cs.LG]. https://doi.org/10.48550/arXiv.2309.10808.
Muñoz-Tamayo, R., Nielsen, B. L., Gagaoua, M., Gondret, F., Krause, E. T., Morgavi, D. P., Olsson, I. A. S., Pastell, M., Taghipoor, M., L. Tedeschi, et al. (2022). Seven steps to enhance open science practices in animal science. PNAS Nexus 1(1):1-6. https://doi.org/10.1093/pnasnexus/pgac106.
NASA (2024). What is artificial intelligence? https://www.nasa.gov/what-is-artificial-intelligence. Accessed March 22, 2025.
Neethirajan, S., & Kemp, B. (2021). Digital livestock farming. Sensing and Bio-Sensing Research 32(1):100408. https://doi.org/10.1016/j.sbsr.2021.100408.
Nowak, B. (2021). Precision agriculture: Where do we stand? A review of the adoption of precision agriculture technologies on field crops farms in developed countries. Agricultural Research https://doi.org/10.1007/s40003-021-00539-x.
Peng, C., Vougioukas, S., Slaughter, D., Fei, Z., & Arikapudi, R. (2022). A strawberry harvest‐aiding system with crop‐transport collaborative robots: Design, development, and field evaluation. Journal of Field Robotics 39(8):1231-1257. https://doi.org/10.1002/rob.22106.
Popović, T., Krčo, S., Maraš, V., Hakola, L., Radonjić, S., Van Kranenburg, R., & Šandi, S. (2021). A novel solution for counterfeit prevention in the wine industry based on IoT, smart tags, and crowd-sourced information. Internet of Things 14(1):100375. https://doi.org/10.1016/j.iot.2021.100375.
Precedence Research (2024). Artificial intelligence (AI) in manufacturing market size, share, and trends. https://www.precedenceresearch.com/artificial-intelligence-in-manufacturing-market?utm_source=chatgpt.com. Accessed March 22, 2025.
Research and Markets (2024). https://www.researchandmarkets.com/report/united-states-agriculture-ai-market?utm_source=chatgpt.com. Accessed March 22, 2025.
Ryo, M. (2022). Explainable artificial intelligence and interpretable machine learning for agricultural data analysis. Artificial Intelligence in Agriculture 6(1):257-265. https://doi.org/10.1016/j.aiia.2022.11.003.
Sachithra, V., & Subhashini, L. D. C. S. (2023). How artificial intelligence uses to achieve the agriculture sustainability: Systematic review. Artificial Intelligence in Agriculture 8(1):46-59. https://doi.org/10.1016/j.aiia.2023.04.002.
Modelling techniques to improve the quality of food using artificial intelligence. Journal of Food Quality 2021(1):2140010. https://doi.org/10.1155/2021/2140010.
Schimmelpfennig, D. (2016). Farm profits and adoption of precision agriculture. https://www.ers.usda.gov/publications/pub-details?pubid=80325. Accessed March 2, 2025.
Shrestha, A. “Multi-temporal UAV remote sensing combined with machine learning for estimating cotton yield.” PhD diss., (Mississippi State University, 2024).
Silva, B., Nunes, L., Estevão, R., Aski, V., & Chandra, R. (2023). GPT-4 as an agronomist assistant? Answering agriculture exams using large language models. arXiv:2310.06225v2 [cs.AI]. https://doi.org/10.48550/arXiv.2310.06225.
Sparrow, R., Howard, M., & Degeling, C. (2021). Managing the risks of artificial intelligence in agriculture. NJAS Impact in Agricultural and Life Sciences 93(1):172–196. https://doi.org/10.1080/27685241.2021.2008777.
Stevens, A. (2025). Artificial intelligence and cybersecurity: the future of grain farming. https://www.extension.iastate.edu/agdm/articles/others/SteFeb25.html. Accessed February 23, 2025.
Strong, R., Sprayberry, S. Dooley, K., Ahn, J., Richards, J., Kinsella, J., Lee, C.-L., Ray, N., Cardey, S., Benson, C., & Ettekal, A. (2023). Sustaining global food systems with youth digital livestock production curricula interventions and adoption to professionally develop agents of change. Sustainability 15(18):13896. https://doi.org/10.3390/su151813896.
Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture 5(1):278–291. https://doi.org/10.1016/j.aiia.2021.11.004.
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimization of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture 4(1):58–73. https://doi.org/10.1016/j.aiia.2020.04.002.
Taseer, A., & Han, X. (2024). Advancements in variable rate spraying for precise spray requirements in precision agriculture using unmanned aerial spraying systems: A review. Computers and Electronics in Agriculture 219(1):108841. https://doi.org/10.1016/j.compag.2024.108841
Tedeschi, L. O. (2019). ASN-ASAS symposium: Future of data analytics in nutrition: Mathematical modeling in ruminant nutrition: Approaches and paradigms, extant models, and thoughts for upcoming predictive analytics. Journal of Animal Science 97(5):1321-1944. https://doi.org/10.1093/jas/skz092.
Tedeschi, L. O., Greenwood, P. L., & Halachmi I. (2021). Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. Journal of Animal Science 99(2):1-11. https://doi.org/10.1093/jas/skab038.
Tedeschi, L. O. (2022). ASAS-NANP Symposium: Mathematical modeling in animal nutrition: the progression of data analytics and artificial intelligence in support of sustainable development in animal science. Journal of Animal Science 100(6):1-11. https://doi.org/10.1093/jas/skac111.
Tedeschi, L. O. (2023). Review: The prevailing mathematical modelling classifications and paradigms to support the advancement of sustainable animal production. Animal 17(1):100813. https://doi.org/10.1016/j.animal.2023.100813.
Trump, D. (2018). Executive Order 13821—Streamlining and expediting requests to locate broadband facilities in rural America. https://www.federalregister.gov/documents/2018/01/11/2018-00553/streamlining-and-expediting-requests-to-locate-broadband-facilities-in-rural-america. Accessed February 24, 2025.
United Nations (2025). Global issues: Population. https://www.un.org/en/global-issues/population#:~:text=Our%20growing%20population&text=The%20world's%20population%20is%20expected,billion%20in%20the%20mid%2D2080s. Accessed March 23, 2025.
USDA National Agricultural Statistics Service (2022). Census of Agriculture. https://www.nass.usda.gov/AgCensus. Accessed March 2, 2025.
USDA (2024). Biden-Harris administration connects people and businesses in rural areas to reliable high-speed internet in 18 states. https://www.usda.gov/about-usda/news/press-releases/2024/12/18/biden-harris-administration-connects-people-and-businesses-rural-areas-reliable-high-speed-internet. Accessed March 2, 2025.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Fellander, A., Langhans, S. D., Tegmark, M., & Nerini, F. F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications 11(1):233. https://doi.org/10.1038/s41467-019-14108-y.
White, B. J., Amrine, D. E., and Larson, R. L. (2018). Big data analytics and precision animal agriculture symposium: Data to decisions. Journal of Animal Science 96(4):1531-1539. https://doi.org/10.1093/jas/skx065.
White, E. L., Thomasson, J. A., Auvermann, B., Kitchen, N. R., Pierson, L. S., Porter, D., ... & Werner, F. (2021). Report from the conference, “Identifying obstacles to applying big data in agriculture”. Precision Agriculture 22(1):306-315. https://doi.org/10.1007/s11119-020-09738-y.
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming – A review. Agricultural Systems 153(1):69-80. https://doi.org/10.1016/j.agsy.2017.01.023.
Xu, W., Xu, T., Thomasson, J. A., Chen, W., Karthikeyan, R., Tian, … & Su, Q. (2023). A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments. Computers and Electronics in Agriculture 211(1):107961. https://doi.org/10.1016/j.compag.2023.107961.
Yadav, P. K., Thomasson, J. A., Hardin, R., Searcy, S. W., Braga-Neto, U., Popescu, S. C., ... & White, E. L. (2023). Plastic contaminant detection in aerial imagery of cotton fields using deep learning. Agriculture 13(7):1365. https://doi.org/10.3390/agriculture13071365.
Yadav, P. K., Thomasson, J. A., Hardin, R., Searcy, S. W., Braga-Neto, U., Popescu, S. C., ... & Enciso, J. (2024). AI-based computer vision detection of cotton in corn fields using UAS remote sensing data and spot-spray application. Remote Sensing 16(15):2754. https://doi.org/10.3390/rs16152754.
Published
Issue
Section
License
Copyright (c) 2025 Council for Agricultural Science and Technology (CAST)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License Terms for CC Attribution-NonCommercial 4.0:
License URL: https://creativecommons.org/licenses/by-nc/4.0/
License Terms Statement:
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
Under the following conditions:
- Attribution — you must give appropriate credit, provide a link to the license, and indicate if changes were made
- NonCommercial — you may not use the material for commercial purposes
No additional restrictions — you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.