RNA Interference in Agriculture: Methods, Applications, and Governance

Authors

DOI:

https://doi.org/10.62300/IRNE9191

Keywords:

RNA interference (RNAi), Double-stranded RNA (dsRNA), Gene silencing, Biopesticides, Spray-induced gene silencing (SIGS), Host-induced gene silencing (HIGS), Genetically modified crops, Pest management, Regulatory governance, Sustainable agriculture

Abstract

RNA interference (RNAi) is a naturally occurring gene-silencing mechanism conserved across eukaryotes. It works by degrading target messenger RNA (mRNA), and has historically served as a research tool for studying gene function. Over the past two decades, RNAi has been explored for agricultural applications, including managing insect pests and pathogens, improving crop traits, and enhancing food quality. RNAi-based crop protection is attractive due to its high specificity, which minimizes unintended effects on non-target organisms and improves safety profiles. This paper explains RNAi mechanisms, current agricultural applications, regulatory perspectives on RNAi-based pesticides, and challenges for commercialization. It aims to inform regulatory agencies, policymakers, industry stakeholders, and the public for better decision-making regarding RNAi technologies in agriculture.

Downloads

Download data is not yet available.

References

Abbasi R, Heschuk D, Kim B, Whyard S. 2020. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. Insect Biochem Molec 127: 103492. https://doi.org/10.1016/j.ibmb.2020.103492

Andongma AA, Greig C, Dyson PJ, Flynn N, Whitten, MMA. 2020. Optimization of dietary RNA interference delivery to western flower thrips Frankliniella occidentalis and onion thrips Thrips tabaci. Arch Insect Biochem 103:e21645, https://doi.org:10.1002/arch.21645

Bachman P, Fischer J, Song Z, Urbanczyk-Wochniak E, Watson G. 2020. Environmental fate and dissipation of applied dsRNA in soil, aquatic systems, and plants. Front Plant Sci 11:21. https://doi.org/10.3389/fpls.2020.00021

Bally J, McIntyre GJ, Doran, RL, Lee, K, Perez, A, Jung H, Naim F, Larrinua IM, Narva KE, Waterhouse, PM. 2016. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts. Front Plant Sci 7:1453. https://doi.org/10.3389/fpls.2016.01453

Bally J, Fishilevich E, Bowling AJ, Pence HE, Waterhouse PM. 2017. Improved insect proofing: expressing double-stranded RNA in chloroplasts. Pest Manag Sci 74(8):1751–1758. https://doi.org/10.1002/ps.4870

Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaugh T, Roberts J. 2007. Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326. https://doi.org/10.1038/nbt1359

Billmyre B, Calo S, Feretzaki M, Wang X, Heitman J. 2013. RNAi function, diversity, and loss in the fungal kingdom. Chromosome Res 21(0):561-572. https://doi.org/10.1007/s10577-013-9388-2

Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilagan O, Lawrence C, Levine S, Moar W, et al. 2012. Characterizing the mechanism of action of double-stranded RNA activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE 7:e47534. https://doi.org/10.1371/journal.pone.0047534

Boutros M, Ahringer J. 2008. The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566. https://doi.org/10.1038/nrg2364

Britton LL, Tonsor GT. 2019. Consumers’ willingness to pay for beef products derived from RNA interference technology. Food Qual Prefer 75:187–197. https://doi.org/10.1016/j.foodqual.2019.02.008

Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan SA, Blaxter M, Ivens A, Maizels RM. 2015. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 5:5488. https://doi.org/10.1038/ncomms6488

Cagliari D, Dias NP, Galdeano DM, dos Santos EÁ, Smagghe G, Zotti MJ. 2019. Management of pest insects and plant diseases by non-transformative RNAi. Front Plant Sci 10 1319. https://doi.org/10.3389/fpls.2019.01319

Cai Q, He B, Kogel KH, Jin H. 2018a. Cross Kingdom RNAi and environmental RNAi - nature’s blueprint for modern crop protection strategies. Curr Opin Microbiol 46: 58-64. https://doi.org/10.1016/j.mib.2018.02.003

Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang HD, Jin H. 2018b. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360(6393):1126-1129. https://doi.org/10.1126/science.aar4142

Canadian Food Inspection Agency (CFIA). 2019. Canadian pre-market regulatory process for plants with novel traits and novel foods and feeds derived from plant sources. https://www.inspection.gc.ca/plantvarieties/plants-with-novel-traits/applicants/canadian-pre-market-regulatory-process/eng/1542135073648/1542135074107 (4 January 2021).

Castellanos NL, Smagghe G, Sharma R, Oliveira EE, and Christiaens O. 2019. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Manag Sci 75(2):537–548. https://doi.org/10.1002/ps.5167

Code of Federal Regulations (CFR). 2007. 174.507 Nucleic acids that are part of a plant-incorporated protectant; exemption from the requirement of tolerance. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/part-174/subpart-W/section-174.507 (21 December 2023).

Chakravarty SS, Massé E. 2019. RNA-dependent regulation of virulence in pathogenic bacteria. Frontiers in Cellular and Infection Microbiology 9:337. https://doi.org/10.3389/fcimb.2019.00337

Christiaens O, Smagghe G. 2014. The challenge of RNAi-mediated control in hemipterans. Curr Opin Insect Sci 6: 15-21. https://doi.org/10.1016/j.cois.2014.09.012

Christiaens O, Dzhamabazova T, Kostov K, Arpaia S, Joga MR, Urru I, Sweet J, Smagghe G. 2018a. Literature review of baseline information on RNAi to support the environmental risk assessment of RNAi-based GM plants. EFSA Supporting Publications 15(5):1424E. https://doi.org/10.2903/sp.efsa.2018.EN-1424

Christiaens O, Tardajos MG, Martinez Reyna ZL, Dash M, Dubruel P, Smagghe, G. 2018b. Increases RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front Physiol 9:316. https://doi.org/10.3389/fphys.2018.00316

Christiaens O, Whyard S, Vélez AM, Smagghe G. 2020. Double-stranded RNA technologies to control insect pests: current status and challenges. Front Plant Sci 11: 451. https://doi.org/10.3389/fpls.2020.00451

Crick F. 1970. Central Dogma of Molecular Biology. Nature 227:561–563.

Dalakouras A, Jarausch W, Buchholz G, Bassler A, Braun M, Manthey T, Krczal G, Wassenegger, M. 2018. Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption. Front Plant Sci 9: 1253. https://doi.org:10.3389/fpls.2018.01253

Dalakouras A, Wassennegger M, McMillan JN, Cardoza V, Maegele I, Dadami E, Runne, M, Krczal G, Wassenegger M. 2016. Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs. Front Plant Sci 7:1327. https://doi.org:10.3389/fpls.2016.01327

Das S, Debnath N, Cui Y, Unrine J, Palli SR. 2015. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis. ACS Appl Mater Interfaces 7: 19530-19535. https://doi.org/10.1021/acsami.5b05232

De Schutter K, Christiaens O, Taning CNT, Smagghe G. 2021. Boosting dsRNA delivery in plant and insect cells with peptide and polymer-based carriers: cases-based current status and future perspectives. In: RNAi for Plant Improvement and Protection (Mezzetti B, Sweet J, eds.). CAB International, 102-116. 9781789248890. https://cabidigitallibrary.org/doi/abs/10.1079/9781789248890.0011

De Schutter K, Taning CNT, Van Daele L, Van Damme EJM, Dubruel P, Smagghe G. 2022. RNAi-based biocontrol products: Current status on market, regulatory aspects and risk assessment. Front Insect Sci 1:818037, doi:10.3389/finsc.2021.818037.

De Schutter K, Verbeke I, Kontogiannatos D, Dubruel P, Swevers L, Van Damme EJM, Smagghe G. 2022. Use of cell cultures in vitro to assess the uptake of long dsRNA in plant cells. In Vitro Cell Dev Biol Plant 58:511–510, 10.1007/s11627-022-10260-1.

Desai SD, Eu YJ, Whyard S, Currie RW. 2012. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol Biol 21:446–455. https://doi.org/10.1111/j.1365-2583.2012.01150.x

Dietz-Pfeilstetter A, Mendelsohn M, Gathmann A, Klinkenbuß, D. 2021. Considerations and regulatory approaches in the USA and in the EU for dsRNA-based externally applied pesticides for plant protection. Front Plant Sci 12:974. doi: 10.3389/fpls.2021.682387

Dubelman S, Fischer J, Zapata F, Huizinga K, Jiang C, Uffman J, Levine S, Carson D. 2014. Environmental fate of double-stranded RNA in agricultural soils. PLoS ONE 9:e93155. doi: 10.1371/journal.pone.0093155

Duman-Scheel M. 2019. Saccharomyces cerevisiae (Baker’s Yeast) as an interfering RNA expression and delivery system. Current Drug Targets 20:942-952. https://doi.org:10.2174/1389450120666181126123538

FIFRA Scientific Advisory Panel (FIFRA SAP). 2014. SAP Minutes No. 2014-02 A Set of Scientific Issues Being Considered by the Environmental Protection Agency Regarding: RNAi Technology: Program Formulation for Human Health and Ecological Risk Assessment. https://www.epa.gov/sites/production/files/2015-06/documents/012814minutes.pdf (11 December 2020).

FIFRA Scientific Advisory Panel (FIFRA SAP). 2016. FIFRA Scientific Advisory Panel Minutes No. 2016-02 A Set of Scientific Issues Being Considered by the Environmental Protection Agency Regarding: RNAi Technology: Human Health and Ecological Risk Assessments for SmartStax PRO. https://www.epa.gov/sites/production/files/2016-12/documents/rnai_sap_sept_2016_final_minutes.pdf (11 December 2020).

Fire A, Xu S, Montgomery MS, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811. https://doi.org/10.1038/35888

Fischer JR, Zapata F, Dubelman S, Mueller GM, Uffman JP, Jiang C, Jensen PD, Levine, SL. 2017. Aquatic fate of a double-1340 stranded RNA in a sediment-water system following an over-water application. Environ Toxicol Chem 36: 727-734. doi:10.1002/etc.3585.

Fishilevich E, Vélez AM, Storer NP, Li H, Bowling AJ, Rangasamy M, Worden SE, Narva KE, Siegfried BD. 2016. RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Manag Sci 72:1652–1663. https://doi.org/10.1002/ps.4324

Food and Agriculture Organization of the United Nations (FAO). 2019. New standards to curb the global spread of plant pests and diseases, http://www.fao.org/news/story/en/item/1187738/icode/

Galli M, Feldmann F, Vogler U, and Kogel KH. 2024. 2024. Can biocontrol be the game changer in Integrated pest management? J Plant Diseases and Protection JPDPD-23-01154

Garbian Y, Maori E, Kalev H, Shafir S, Sela I. 2012. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathogens 8:e1003035. https://doi.org/10.1371/journal.ppat.1003035

Ghosh SK, Hunter WB, Park AL, Gundersen Rindal DE. 2017. Double strand RNA delivery system for plant-sap-feeding insects. PLoS One 12:e0171861. https://doi.org:10.1371/journal.pone.0171861

Gibbs AG. 1998. Water-proofing properties of cuticular lipids. Am Zool 38:471–482.

Goodfellow S, Zhang D, Wang MB, Zhang R. 2019. Bacterium-mediated RNA interference: potential application in plant protection. Plants (Basel) 8(12): 572. https://doi.org/10.3390%2Fplants8120572

Guo W. Bai C, Wang Z, Wang P, Fan Q, Mi X, Wang L, He J, Pang J, Luo X, Fu W, Tian Y, Si H, Zhang G, Wu J. 2018. Double-stranded RNAs high-efficiently protect transgenic potato from Leptinotarsa decemlineata by disrupting juvenile hormone biosynthesis. J Agric Food Chem 66: 11990-11999. https://doi.org/10.1021/acs.jafc.8b03914

Gurusamy D, Mogilicherla K, Palli SR. 2020a. Chitosan nanoparticles help double stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem 104(4): e21677. https://doi.org/10.1002/arch.21677

Gurusamy D, Mogilicherla K, Shukla JN, Palli, SR. 2020b. Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch Insect Biochem 104(4): e21678. https://doi.org/10.1002/arch.21678

Hammond SM, Caudy AA, Hannon GJ. 2001. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119. https://doi-org.uml.idm.oclc.org/10.1038/35052556

Hashiro S, Chikami Y, Kawaguchi H, Krylov AA, Niimi T,Yasueda, H. 2021. Efficient production of long-double stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with oliphage T7-expression system. Appl Microbiol Biot 105:4987–5000, https://doi.org/10.1007/s00253-021-11324-9

Hawkins NJ, Bass C, Dixon A, Neve P 2019. The evolutionary origins of pesticide resistance. Biol Rev 94:135–155. https://doi.org/10.1111/brv.12440

Head GP, Carroll MW, Evans SP, Rule DM, Willse AR, Clark TL, Storer NP, Flannagan RD, Samuel LW, Meinke LJ. 2017. Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci 73:1883–1899. https://doi.org/10.1002/ps.4554

Health Canada. 2017. Novel Food Information: Insect Resistant and Herbicide Tolerant Corn – MON 87411. https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novelfoods/approved-products/novel-food-information-insect-resistant-herbicide-tolerantcorn-87411.html (23 December 2020).

Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM. 2007. High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5: 605-614. https://doi.org/10.1111/j.1467-7652.2007.00265.x

Hunter W, Ellis J, vanEngelsdorp D, Hayes J, Westervelt D, Glick E, Williams M, Sela I, Maori E, Pettis J, Cox-Foster D, Paldi N. 2010. Large-scale field application of RNAi technology reducing Israeli Acute Paralysis Virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathogens 6:e1001160. https://doi.org/10.1371/journal.ppat.1001160

Hunter WB, Glick E, Paldi N, Bextine BR. 2012. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest Entomol 37(1): 85-87. https://doi.org/10.3958/059.037.0110

International Service for the Acquisition of Agri-biotech Applications (ISAAA). 2023a GM Approval Database, GM Crop: MON87411. http://www.isaaa.org (10 December 2023).

International Service for the Acquisition of Agri-biotech Applications (ISAAA). 2023b GM Approval Database: KK179. http://www.isaaa.org (10 December 2023).

Ipsaro J, Joshua-Tor L. 2015 From guide to target: molecular insight into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22: 20-28. https://doi.org/10.1038/nsmb.2931

Ivashuta SI, Zhang Y, Wiggins EB, Ramaseshadri P, Segers GC, Johnson S, Meyer SE, Kerstetter RA, McNulty BC, Bolognesi R, Heck GR. 2015. Environmental RNAi in herbivorous insects. RNA 21:840-850. https://doi.org/10.1261/rna.048116.114

Ivashuta SI, Petrick JS, Heisel SE, Zhang Y, Guo L, Reynolds TL, Rice JF, Allen E, Roberts JK. 2009. Endogenous small RNAs in grain: semi-quantification and sequence homology to human and animal genes. Food Chem Toxicol47(2):353–360. https://doi.org/10.1016/j.fct.2008.11.025

Jacques S, Reidy-Crofts J, Sperschneider J, Kamphuis LG, Gao LL, Edwards OR, Singh KB. 2020. An RNAi supplemented diet as a reverse genetics tool to control bluegreen aphid, a major pest of legumes. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-58442-4

Jain RG, Robinson KE, Asgari S, Mitter N. 2020. Current scenario of RNAi-based hemipteran control. Pest Manag Sci 77(5): 2188-2196. https://doi.org/10.1002/ps.6153

Jin S, Singh ND, Li L, Zhang X, Henry D. 2015. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13(3):435–446. https://doi.org/10.1111/pbi.12355

Joga MR, Zotti MJ, Smagghe G, Christiaens O. 2016. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Front Physiol, 7: 1–14. https://doi.org/10.3389/fphys.2016.00553

Kettles GJ, Hofinger BJ, Hu P, Bayon C, Rudd JJ, Balmer D, Courbot M, Hammond-Kosack KE, Scalliet G, Kanyuka K. 2019. sRNA profiling combined with gene function analysis reveals a lack of evidence for cross-Kingdom RNAi in the wheat - Zymoseptoria tritici pathosystem. Front Plant Sci 10:892. https://doi.org/10.3389/fpls.2019.00892

Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W, Pleau M, Miller K, Zhang Y, Ramaseshadri P, Jiang C et al. 2018. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 13(5):e0197059. https://doi.org/10.1371/journal.pone.0197059

Kleter GA. 2020. Food safety assessment of crops engineered with RNA interference and other methods to modulate expression of endogenous and plant pest genes. Pest Manag Sci 76:3333–3339. https://onlinelibrary.wiley.com/doi/epdf/10.1002/ps.5957

Knorr E, Fishilevich E, Tenbusch L, Frey MLF, Rangasamy M, Billion A, Worden SE, Gandra P, Arora K, Lo W, Schulenberg G, Valverde-Garcia P, Vilcinskas A, Narva KE. 2018. Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Sci Rep 8(1):2061. https://doi.org/10.1038/s41598-018-20416-y

Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, McMillan J, Mentzel T, Kogel KH. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12:e1005901. https://doi.org:10.1371/journal.ppat.1005901

Koch A, Höfle L, Werner BT, Imani J, Schmidt A, Jelonek L, Kogel KH. 2019. SIGS vs HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and nonhost plants. Mol Plant Pathol 20(12):1636-1644. https://doi.org/10.1111/mpp.12866

Koch A, Kogel KH. 2014. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J 12:821-831. https://doi.org/10.1111/pbi.12226

Kola VSR, Renuka P, Madhav MS, Mangrauthia SK. 2015. Key enzymes and proteins of crop insects as candidates for RNAi based gene silencing. Front Physiol 6. https://doi.org/10.3389/fphys.2015.00119

Kolliopoulou A, Swevers L. 2014. Recent progress in RNAi research in Lepidoptera: intracellular machinery, antiviral immune response and prospects for insect pest control. Curr Opin Insect Sci 6: 28-34. https://doi.org/10.1016/j.cois.2014.09.019

Li H, Guan R, Guo H, Miao X. 2015. New insights into an rnai approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Environ 38(11):2277-2285. https://doi.org/10.1111/pce.12546

Lim ZX, Robinson KE, Jain RG, Chandra GS, Asokan R, Asgari S, Mitter N. 2016. Diet delivered RNAi in Helicoverpa armigera—Progresses and challenges. J Insect Physiol 85:86–93. https://doi.org/10.1016/j.jinsphys.2015.11.005

Liu Q, Singh SP, Green AG. 2002. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129(4):1732–1743. https://doi.org/10.1104/pp.001933

Liu S, Jaouannet M, Dempsey DM, Imani J, Coustau C, Kogel KH. 2020. RNA-based technologies for pest control in plant production. Biotechnol Adv 39:107463. https://doi.org/10.1016/j.biotechadv.2019.107463

Liu S, Ladera-Carmona MJ, Poranen MM, van Bel AJE, Kogel KH, Imani, J. 2021. Evaluation of dsRNA delivery methods for targeting macrophage migration inhibitory factor MIF in RNAi-based aphid control. J Plant Dis Protect 128:1201–1212. https://doi.org/10.1007/s41348-021-00464-9

Ma X, Wiedmer J, Palma-Guerrero J. 2020. Small RNA bidirectional crosstalk during the interaction between wheat and Zymoseptoria tritici. Front Plant Sci 10:1669. https://doi.org/10.3389/fpls.2019.01669

Mao J, Zeng F. 2014. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 23:145-152. https://doi.org/10.1007/s11248-013-9739-y

Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307–1313. https://doi.org/10.1038/nbt1352

Maori E, Garbian Y, Kunik V, Mozes-Koch R, Malka O, Kalev H, Sabath N, Sela I, Shafir S. 2019. A Transmissible RNA Pathway in Honey Bees. Cell Rep 4;27(7):1949–1959. e6. doi: 10.1016/j.celrep.2019.04.073.

Martinez Z, De Schutter K, Van Damme EJM, Vogel E, Wynant N, Vanden Broeck J, Christiaens O, Smagghe G. 2021. Accelerated delivery of dsRNA in lepidopteran midgut cells by a Galanthus nivalis lectin (GNA)-dsRNA-binding domain fusion protein. Pestic Biochem Phys 175:104853. https://doi.org/10.1016/j.pestbp.2021.104853

Maximo WPF, Howell JL, Mogilicherla K, Basij M, Chereddy S, Palli SR. 2020. Inhibitor of apoptosis is an effective target gene for RNAi-mediated control of Colorado potato beetle, Leptinotarsa decemlineata. Arch Insect Biochem 104:e21685. https://doi.org/10.1002/arch.21685

McLoughlin AG, Wytinck N, Walker PL, Girard IJ, Rashid KY, de Kievit T, Fernando WGD, Whyard S, Belmonte MF. 2018. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep 8:7320. https://doi.org:10.1038/s41598-018-25434-4

Mehlhorn SG, Geibel S, Bucher G, Nauen, R. 2020. Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of Colorado potato beetle reveals a robust response with minor variability. Pestic Biochem Phys 166:104569. https://doi.org/10.1016/j.pestbp.2020.104569

Melnyk CW, Molnar A, Baulcombe DC. 2011. Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553-3563. https://doi.org/10.1038/eboj.2011.274

Mezzetti B, Smagghe G, Arpaia S, Christiaens O, Dietz-Pfeilstetter A, Jones H, Kostov K, Sabbadini S, Opsahl-Sorteberg H, Ventura V, Taning CNT, Sweet J. 2020. RNAi: What is its position in agriculture? J Pest Sci 93:1125-1130. https://doi.org/10.1007/s10340-020-01238-2

Mishra S, Dee J, Moar W, Dufner-Beattie J, Baum J, Dias NP, Alyokhin A, Buzza A, Rondon SI, Clough M, Menasha S, Groves R, Clements J, Ostlie K, Felton G, Waters T, Snyder WE, Jurat-Fuentes, JL. 2021. Selection for high levels of resistance to double stranded RNA (dsRNA) in Colorado potato beetle (Leptinotarsa decemlineata Say) using non-transgenic foliar delivery. Sci Rep 11:6523. https://doi.org/10.1038/s41598-021-85876-1

Mitter N, Zhai Y, Bai AX, Chua K, Eid S, Constantin M, Mitchell R, Pappu HR. 2016. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Res 211:151–158. https://doi.org/10.1016/j.virusres.2015.10.003

Mitter N, Worrall, EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu QG, Xu ZP. 2017a. Clay nanosheet for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3(2):16207. https://doi.org/10.1038/nplants.2016.207

Mitter N, Worrall EA, Robinson KE, Xu ZP, Carroll BJ. 2017b. Induction of virus resistance by exogenous application of double-stranded RNA. Curr Opin Virol 26:49–55. https://doi.org/10.1016/j.coviro.2017.07.009

Mocellin S, Provenzano M. 2004. RNA interference: Learning gene knock-down from cell physiology. Journal of Translational Medicine 2:1–6, https://doi.org/10.1186/1479-5876-2-39

Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872-875. https://doi.org/10.1126/science.1187959

Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC. 2016. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6:22587.

Napoli C, Lemieux C, Jorgensen R. 1990. Introduction of chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4): 279–289. https://doi.org/10.1105/tpc.2.4.279

Nasfi S, Kogel KH. 2022. Packaged or unpackaged: appearance and transport of extracellular noncoding RNAs in the plant apoplast. exRNA 4:13. doi: 10.21037/exrna-22-11.6: 22587.

Niu J, Yang WJ, Tian Y, Fan JY, Ye C, Shang F, Ding BY, Zhang J, An X, Yang L, Chang TY, Christiaens O, Smagghe, G, Wang JJ. 2019. Topical dsRNA delivery induces gene silencing and mortality in the pea aphid. Pest Manag Sci 75: 2873–2881.

Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: Host-Induced Gene Silencing on the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141. https://doi.org/10.1105/tpc.110.077040

Nunes CC, Dean RA. 2012. Host-Induced Gene Silencing: A tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13(5):519–29. https://doi.org/10.1111/j.1364-3703.2011.00766.x

Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM. 2009. The evolution of RNAi as a defense against viruses and transposable elements. Philos Trans R Soc B 364: 99-115. https://doi.org/10.1098/rstb.2008.0168.

Office of Science and Technology Policy (OSTP). 1986. Coordinated framework for the regulation of biotechnology. Fed Regist 51(123):23302–23350.

Okamura K, Ishizuka A, Siomi H, Siomi MC 2004. Distinct roles for argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666. https://doi.org/10.1101%2Fgad.1210204

Organisation for Economic Co-operation and Development (OECD). 2020. Considerations for the environmental risk assessment of the application of sprayed or externally applied dsRNA-based pesticides. OECD Environment, Health and Safety Publications Series on Pesticides No. 104.

Organisation for Economic Co-operation and Development (OECD). 2023. Considerations for the human health risk assessment of externally applied dsRNA-based pesticides. OECD Environment, Health and Safety Publications Series on Pesticides No. 110.

Paldi N, Glick E, Oliva M, Zilberberg Y, Aubin L, Pettis J, Chen Y, Evans JD. 2010. Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl Environ Microbiol 76:5960–5964. https://doi.org/10.1128/AEM.01067-10

Parker KM, Barragán Borrero V, vanLeeuwen D, Lever MA, Mateescu B, Sander M. 2019. Environmental fate of RNA interference pesticides: Adsorption and degradation of double-stranded RNA molecules in agricultural soils. Environ Sci Technol 53(6): 3027–3036. https://doi.org/10.1021/acs.est.8b05576

Parsons KH, Mondal MH, McCormick CL, Flynt AS. 2018. Guanidinium-functionalized interpolyelectrolyte complexes enabling RNAi in resistant insect pests. Biomacromolecules 19(4): 1111–1117. https://doi.org/10.1021/acs.biomac.7b01717

Petek M, Coll A, Ferenc R, Razinger J, Gruden K. 2020. Validating the potential of double-stranded RNA targeting Colorado potato beetle mesh gene in laboratory and field trials. Front Plant Sci 11:1250. https://doi.org/10.3389/fpls.2020.01250

Petrick JS, Brower-Toland B, Jackson AL, Kier LD. 2013. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: A scientific review. Regul Toxicol Pharmacol 66(2):167–176. https://doi.org/10.1016/j.yrtph.2013.03.008

Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J. 2019. Host-Induced Gene Silencing: A powerful strategy to control diseases of wheat and barley. Int J Mol Sci 20(1): 206. https://doi.org/10.3390/ijms20010206

Rangasamy M, Siegfried BD. 2012. Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Pest Manag Sci 68(4):587–591.

Rathore KS, Pandeya, D, Campbell LM, Wedegaertner TC, Puckhaber L, Stipanovic RD, Thenell JS, Hague S, and Hake K. 2020. Ultra-low Gossypol Cottonseed: Selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition. Crit Rev Plant Sci 39: 1-29. https://doi.org/10.1080/07352689.2020.1724433

Redenbaugh K, Hiatt B, Martineau B, Kramer M, Sheehy R, Sanders R, Houck C, Emlay D. 1992. Safety assessment of genetically engineered fruits and vegetables: A case study of the Flavr Savr Tomato. Boca Raton (FL): CRC Press

Rodrigues TB, Petrick J. 2020. Safety considerations for humans and other vertebrates regarding agricultural uses of externally applied RNA molecules. Front Plant Sci 11:407. doi: 10.3389/fpls.2020.00407.

Rodrigues T, Sridharan K, Manley B, Cunningham D, Narva K. 2021b. Development of dsRNA as a Sustainable Bioinsecticide: From Laboratory to Field. Pp. 65–82. In B. Rauzan and B. A. Lorsbach (eds.). Crop Protection Products for Sustainable Agriculture. doi: 10.1021/bk-2021-1390.ch005.

Rodrigues TB, Mishra SK, Sridharan K, Barnes ER, Alyokhin A, Tuttle R, Kokulapalan W, Garby D, Skizim N, Tang YW. et al. 2021a. First sprayable double-stranded RNA-bases biopesticide product target Type-5 Colorado potato beetle. Front Plant Sci 12:728652. https://doi.org/10.3389/fpls.2021.728652

Romeis J, Widmer F. 2020. Assessing the risks of topically applied dsRNA-based products to non-target arthropods. Front Plant Sci 11:679. doi: 10.3389/fpls.2020.00679

Rommens CM, Ye J, Richael C, Swords K. 2006. Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54: 9882-9887. https://doi.org/10.1021/jf062477l

Rommens CM, Yan H, Swords K, Richael C, Ye, JS. 2008. Low-acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853. https://doi.org/10.1111/j.1467-7652.2008.00363.x

Rosa C, Kuo, YW, Wuriyanghan H, Falk, BW. 2018. RNA Interference mechanisms and applications in plant pathology. Annu Rev Phytopathol 56:581–610. https://doi.org/10.1146/annurev-phyto-080417-050044

Ruf A, Oberkofler L, Robatzek S, Weiberg A. 2022. Spotlight on plant RNA-containing extracellular vesicles. Curr Opin Plant Biol 69(2022):102272. doi.org/10.1016/j.pbi.2022.102272.

San Miguel K, Scott JG. 2016. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci 72:801–809. https://doi.org/10.1002/ps.4056

Schumann M, Patel A, Vidal S. 2014. Soil application of an encapsulated CO₂ source and its potential for management of western corn rootworm larvae. J Econ Entomol 107: 230-239. https://doi.org:10.1603/ec13344

Schwartz SH, Hendrix B, Hoffer P, Sanders RA, Zheng W. 2020. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiol 184:647–657. https://doi.org/10.1104/pp.20.00733

Šečić E, Kogel KH. 2021. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Curr Opin Plant Biotechnol 70:136–142. https://doi.org/10.1016/j.copbio.2021.04.001

Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla, N. 2020. Global trends in pesticides: A looming threat and viable alternatives. Ecotox Environ Safe 201:110812. https://doi.org/10.1016/j.ecoenv.2020.110812

Shekhawat UKS, Ganapathi TR, Hadapad AB. 2012. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93(8):1804–1813. https://doi.org/10.1099/vir.0.041871-0

Shen GM, Song CG, Ao YQY, Xiao YH, Zhang YJ, Pan Y, He L. 2017. Transgenic cotton expressing CYP392A4 double-stranded RNA decreases the reproductive ability of Tetranychus cinnabarinus. Insect Sci 24:559–568. https://doi.org/10.1111/1744-7917.12346

Shew AM, Danforth DM, Nalley LL, Nayga RM Jr, Tsiboe F, Dixon BL. 2016. Consumers’ willingness-to-pay for RNAi versus Bt rice: Are all biotechnologies the same? Paper presented at: Agricultural & Applied Economics Association’s Annual Meeting. Boston, Massachusetts.

Shi J, Lang C, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G. 2015. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Biochem Biophys Res Commun 466(3):518–522. https://doi.org/10.1016/j.bbrc.2015.09.062

Shukla JN, Kalsi M, Sethi A, Narva KE, Singh S, Mogilicherla K, Palli SR. 2016. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biology 13(7):656–669. http://dx.doi.org/10.1080/15476286.2016.1191728

Singh AD, Wong S, Ryan CP, Whyard S. 2013. Oral delivery of double-stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: Implications for pest mosquito control. J Insect Sci 13(69): 1–18. https://doi.org/10.1673/031.013.6901

Singh IK, Singh S, Mogilicherla K, Shukla JN, Palli SR. 2017. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-17134-2

Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS. 2006. Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Nat Acad Sci USA 103:18054–18059. https://doi.org/10.1073/pnas.0605389103

Swevers L, Liu JS, Smagghe G. 2018. Defense mechanisms against viral infection in Drosophila: RNAi and non-RNAi. Viruses 10:230. https://doi.org/10.3390/v10050230

Taning CNT, Christiaens O, Berkbens N, Casteels H, Maes M, Smagghe G. 2016. Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. J Pest Sci 89: 803-814. https://doi.org:10.1007/s10340-016-0736-9

Tayler A, Heschuk D, Giesbrecht D, Park, JY, Whyard, S. 2019. Efficiency of RNA interference is improved by knockdown of dsRNA nucleases in tephritid fruit flies. Open Biol 9(12). https://doi.org/10.1098/rsob.190198

Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, et al. 2011. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245. https://doi.org/10.1016/j.jinsphys.2010.11.006

Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W. 2009. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4:e6225. https://doi.org/10.1371/journal.pone.0006225

Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I. 2008. RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res 17(5):897–904. https://doi.org/10.1007/s11248-008-9174-7

U.S. Environmental Protection Agency (US EPA) 2015b. Environmental Risk Assessment for a FIFRA Section 3 Limited Seed Increase Registration of DvSnf7 Double Stranded RNA (dsRNA) and Cry3Bb1 Bacillus thuringiensis Derived Insecticidal Protein as Expressed in MON 87411 Maize. https://www.regulations.gov/document?D=EPA-HQ-OPP-2014-0293-0390 (18 December 2020).

U.S. Environmental Protection Agency (US EPA). 2001. Exemption from the requirement of tolerance under the federal Food, Drug, and Cosmetic Act for residues of nucleic acids that are part of plant-incorporated protectants (formerly plant-insecticides). https://www.federalregister.gov/documents/2001/07/19/01-17982/exemption-from-the-requirement-of-a-toleranceunder-the-federal-food-drug-and-cosmetic-act-for (9 December 2023).

U.S. Environmental Protection Agency (US EPA). 2010a. Biopesticide Registration Action Document: Coat Protein Gene of Plum Pox Virus. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-006354_7-May-10.pdf (4 December 2020).

U.S. Environmental Protection Agency (US EPA). 2010b. Biopesticide Registration Action Document: Bacillus thuringiensis Cry1Ac Protein and the Genetic Material (Vector PV-GMIR9) Necessary for Its Production in MON 87701 (OECD Unique Identifier: MON 877Ø1-2) Soybean. https://www3.epa.gov/pesticides/chem_search/reg_actions/pip/bt-cry1ac-protien.pdf (11 December 2020).

U.S. Environmental Protection Agency (US EPA). 2015a. Registration Decision for Commercial Use Corn Products Containing the DvSnf7 dsRNA Plant-Incorporated – Protectant (Event MON 87411). https://www.regulations.gov/document?D=EPAHQ-OPP-2014-0293-0407 (4 December 2020).

U.S. Environmental Protection Agency (US EPA). 2016a. Environmental Risk Assessment for a FIFRA Section 3 Registration of MON89034 x TC1507 x MON 87411 x DAS-59122-7 Combined Trait Maize Expressing Cry 1A.105, Cry2Ab2, Cry 1 F, Cry3Bb 1, Cry34/35Ab 1 Bacillus thuringiensis Derived Insecticidal Protein, and DvSnf7 Double Stranded RNA (dsRNA).

U.S. Environmental Protection Agency (US EPA). 2016b. Human Health Risk Assessment: Review of Product Characterization and Protein Expression Analysis Data in support for a Sec. 3 Registration of Combination Plant-Incorporated Protectant (PIP): MON 89034 x TC 1507 x MON 87411 x DAS-59122-7 20% structured refuge product [EPA Reg. No. 524-AGE] and MON 89034 x TC 1507 x MON 87411 x DAS-59122-7 9515% Seed Blend [EPA Reg. No. 524-AGR]. https://www.regulations.gov/document?D=EPA-HQ-OPP-2016-0349-0008 (7 December 2020).

U.S. Environmental Protection Agency (US EPA). 2023a. Pioneer Hi-Bred International, Inc.; determination of nonregulated status for insect resistant and herbicide-tolerant maize. https://www.federalregister.gov/documents/2023/12/01/2023-26458/pioneerhi-bred-international-inc-determination-ofnonregulated-status-for-insect-resistant-and (7 December 2023).

U.S. Environmental Protection Agency (US EPA). 2023b. Registration Decision for the New Active Ingredient Ledprona (Leptinotarsa decemlineata-specific recombinant double-stranded interfering Oligonucleotide GS2) (CAS Number: 2433753-68-3). https://www.regulations.gov/document/EPA-HQ-OPP-2021-0271-0196 . (4 January 2024)

Vogel E, Santos D, Mingels L, Verdonckt TW, Vanden Broeck J. 2019. RNA interference in insects: Protecting beneficials and controlling pests. Front Physiol 9:1912. https://doi.org/10.3389/fphys.2018.01912

Vurro M, Miguel-Rojas C, Pérez-de-Luquec A. 2019. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag Sci 75: 403–2412. https://doi.org/10.1002/ps.5348

Wallis DC, Nguyen DAH, Uebel CJ, Phillips CM 2019. Visualization and quantification of transposon activity in Caenorhabditis elegans RNAi pathway mutants. G3-Genes Genomes Genetics 9:3825–3832. https://doi.org/10.1534/g3.119.400639

Waltz, E. 2015. Nonbrowning GM apple cleared for Market. Nat Biotechnol 33:326–327. https://doi.org/10.1038/nbt0415-326c

Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:16151. https://doi.org:10.1038/nplants.2016.151

Weiberg A, Wang M, Lin F. M, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123. https://doi.org/10.1126/science.1239705

White House. 2017. Modernizing the Regulatory System for Biotechnology Products: Final Version of the 2017 Update to the Coordinated Framework for the Regulation of Biotechnology. The White House, January 4, 2017, https://www.epa.gov/sites/production/files/2017-01/documents/2017_coordinated_framework_update.pdf (4 December 2020).

Whitten MM, Dyson P. 2017. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. BioEssays 39(3):1600247. https://doi.org/10.1002/bies.201600247

Whitten MM, Facey PD, Del Sol R, Fernandez-Martinez LT, Evans MC, Mitchell JJ, Bodger OG, Dyson PJ. 2016. Symbiont-mediated RNA interference in insects. Proc R Soc Lond 283(1825):20160042.

Whitten MM, Facey PD, Del Sol R, Fernandez-Martinez LT, Evans MC, Mitchell JJ, Bodger OG, Dyson PJ. 2016. Symbiont-mediated RNA interference in insects. Proc R Soc Lond 283(1825):20160042. https://doi.org/10.1098/rspb.2016.0042

Whyard S, Singh AD, Wong S. 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39(11):824–832. https://doi.org/10.1016/j.ibmb.2009.09.007

Wolt J, Keese P, Raybould A, Fitzpatrick JW, Burachik M, Gray A, Olin SS, Schiemann J, Sears M, Wu F. 2010. Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Res 19:425-436. https://doi.org/10.1007/s11248-009-9321-9

Xiong Y, Zeng H, Zhang Y, Xu D, Qiu D. 2013. Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Int J Biol Sci 9:370–381. https://www.ijbs.com/v09p0370.htm

Xu J, Wang XF, Chen P, Liu FT, Zheng SC, Ye H, Mo MH. 2016. RNA interference in moths: Mechanisms, applications and progress. Genes 7(10):88. https://doi.org/10.3390/genes7100088

Yan S, Qian J, Cai C, Ma Z, Li J, Yin M, Ren B, Shen J. 2020. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J Pest Sci 93:449–459. https://doi.org/10.1007/s10340-019-01157-x

Yin D, Deng S, Zhan K, Cui D. 2007. High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Reporter 25:154–163. https://doi.org/10.1007/s11105-007-0017-0

Zhang H, Li H, Guan R, Miao X. 2015b. Lepidopteran insect species-specific, broad-spectrum, and systemic RNA interference by spraying dsRNA on larvae. Entomol Exp et Appl 155:218–228. https://doi.org/10.1111/eea.12300

Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. 2015a. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994. https://doi.org/10.1126/science.1261680

Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Hu HS 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2: 16153. https://doi.org/10.1038/nplants.2016.153

Zhong C, Smith NA, Zhang D, Goodfellow S, Zhang R, Shan W, Wang AB. 2019. Full length hairpin RNA accumulates at high levels in yeast but not in bacteria and plants. Genes 15(10):458. https://doi.org/10.3390/genes10060458

Zhu F, Xu J, Palli R, Ferguson J, Palli SR. 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 67: 175–182. https://doi.org/10.1002/ps.2048

Zhu KY, Palli RS. 2020. Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology 7(65):293–311. https://doi.org/10.1146/annurev-ento-011019-025224

Zimmer AM, Pan YK, Chandrapalan T, Kwong RWM, Perry SF. 2019. Loss-of-function approaches in comparative physiology: Is there a future for knockdown experiments in the era of genome editing? J Exp Biol 222(7). https://doi.org/10.1242/jeb.175737

Downloads

Published

2024-01-11

Issue

Section

CAST Issue Papers

How to Cite

Vélez Arango, A. M., Narva, K., Darlington, M., Jurat-Fuentes, J. L., Kogel, K.-H., Rathore, K. S., Smagghe, G., & Whyard, S. (2024). RNA Interference in Agriculture: Methods, Applications, and Governance. Council for Agricultural Science and Technology (CAST). https://doi.org/10.62300/IRNE9191